| 
						
						
						
					 | 
				
				 | 
				
					@ -0,0 +1,16 @@ | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					import torch.nn as nn | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					import torch.nn.functional as F | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					# CNN architecture definition | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					class Net(nn.Module): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    def __init__(self): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        super(Net, self).__init__() | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        # convolutional layer | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        self.conv1 = nn.Conv2d(3, 16, 3, padding=1) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        # max pooling layer | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        self.pool = nn.MaxPool2d(2, 2) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    def forward(self, x): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        # add sequence of convolutional and max pooling layers | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        x = self.pool(F.relu(self.conv1(x))) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        return x |