| 
																	
																	
																	
																 | 
																@ -0,0 +1,16 @@ | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																import torch.nn as nn | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																import torch.nn.functional as F | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																
 | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																# CNN architecture definition | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																class Net(nn.Module): | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																    def __init__(self): | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																        super(Net, self).__init__() | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																        # convolutional layer | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																        self.conv1 = nn.Conv2d(3, 16, 3, padding=1) | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																        # max pooling layer | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																        self.pool = nn.MaxPool2d(2, 2) | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																
 | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																    def forward(self, x): | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																        # add sequence of convolutional and max pooling layers | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																        x = self.pool(F.relu(self.conv1(x))) | 
															
														
														
													
														
															
																 | 
																 | 
																 | 
																 | 
																 | 
																        return x |