Browse Source

Added Basic Neural Network

This is a basic implementation of a neural network using pytorch. The network accepts an input of 784 and generate a final output of 10. eg(classifying 28x28 -> 784 images of 10 digits)
pull/21/head
elias 5 years ago
parent
commit
cef04aeb63
1 changed files with 23 additions and 0 deletions
  1. +23
    -0
      ML Cookbook/BasicNeuralNet.py

+ 23
- 0
ML Cookbook/BasicNeuralNet.py View File

@ -0,0 +1,23 @@
from torch import nn
class BasicNeuralNet(nn.Module):
def __init__(self):
super().__init__()
# Inputs to hidden layer linear transformation
self.hidden = nn.Linear(784, 256)
# Output layer, 10 units
self.output = nn.Linear(256, 10)
# Define sigmoid activation and softmax output
self.sigmoid = nn.Sigmoid()
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
# Pass the input tensor through each of the operations
x = self.hidden(x)
x = self.sigmoid(x)
x = self.output(x)
x = self.softmax(x)
return x

Loading…
Cancel
Save