|
|
@ -33,10 +33,28 @@ def k_days_into_future_regression(X, y, k, n0): |
|
|
|
return regr.intercept_, regr.coef_, r2, mse |
|
|
|
|
|
|
|
|
|
|
|
def standard_lr(x, y): |
|
|
|
regr = linear_model.LinearRegression() |
|
|
|
regr.fit(x, y) |
|
|
|
predictions = regr.predict(x) |
|
|
|
mse = mean_squared_error(y, predictions) / (len(y) - 2) |
|
|
|
r2 = r2_score(y, predictions) |
|
|
|
return regr.intercept_, regr.coef_, r2, mse |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
fatigueSums = pd.read_csv("fatigue_total_sum.csv") |
|
|
|
performance = pd.read_csv("../data_preparation/cleaned/expSmoothWorkAndFatigueData.csv", index_col=0).drop(columns=["totalWork", "averageWorkLoad", "smoothedFatigueData"]) |
|
|
|
print(k_days_into_future_regression(fatigueSums, performance, 0, 1)) |
|
|
|
# fatigueSums = pd.read_csv("fatigue_total_sum.csv") |
|
|
|
# workMovingAverage21 = pd.read_csv("21DaySlidingWorkAverage.csv", index_col=0) |
|
|
|
# print(k_days_into_future_regression(workMovingAverage21, fatigueSums, 0, 21)) |
|
|
|
|
|
|
|
|
|
|
|
wellness = pd.read_csv("../data_preparation/cleaned/time_series_normalized_wellness_menstruation.csv") |
|
|
|
|
|
|
|
wellness = wellness.fillna(0) |
|
|
|
x = wellness[['normSoreness', 'TimeSinceAugFirst']] |
|
|
|
y = wellness['normFatigue'] |
|
|
|
print(wellness.isnull().sum()) |
|
|
|
print(standard_lr(x, y)) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|