PerryXDeng 5 years ago
parent
commit
7257d8e946
3 changed files with 56 additions and 3 deletions
  1. +13
    -0
      findings/data_plot.py
  2. +22
    -0
      hypotheses_modeling/hypotheses.txt
  3. +21
    -3
      hypotheses_modeling/team_regressions.py

+ 13
- 0
findings/data_plot.py View File

@ -0,0 +1,13 @@
from matplotlib import pyplot as plt
import pandas as pd
def plot_xy(x, y):
plt.scatter(x, y)
plt.xlabel(x.name)
plt.ylabel(y.name)
plt.show()
wellness = pd.read_csv('../data_preparation/data/wellness.csv')
plot_xy(wellness['Fatigue'], wellness['SleepHours'])

+ 22
- 0
hypotheses_modeling/hypotheses.txt View File

@ -0,0 +1,22 @@
Team:
1.
x - normFatigue, TimeSince
y - normSoreness
r2 - 0.16830803694995466
2.
x - normFatigue, TimeSince
y - normDesire
r2 - 0.1722466278587138
3.
x - normFatigue, TimeSince
y - normIrritability
r2 - 0.09563459728506452
4.
x - normSleepHours, TimeSince
y - normSleepQualiyt
r2 - 0.09717095676693188
5.

+ 21
- 3
hypotheses_modeling/team_regressions.py View File

@ -33,10 +33,28 @@ def k_days_into_future_regression(X, y, k, n0):
return regr.intercept_, regr.coef_, r2, mse return regr.intercept_, regr.coef_, r2, mse
def standard_lr(x, y):
regr = linear_model.LinearRegression()
regr.fit(x, y)
predictions = regr.predict(x)
mse = mean_squared_error(y, predictions) / (len(y) - 2)
r2 = r2_score(y, predictions)
return regr.intercept_, regr.coef_, r2, mse
def main(): def main():
fatigueSums = pd.read_csv("fatigue_total_sum.csv")
performance = pd.read_csv("../data_preparation/cleaned/expSmoothWorkAndFatigueData.csv", index_col=0).drop(columns=["totalWork", "averageWorkLoad", "smoothedFatigueData"])
print(k_days_into_future_regression(fatigueSums, performance, 0, 1))
# fatigueSums = pd.read_csv("fatigue_total_sum.csv")
# workMovingAverage21 = pd.read_csv("21DaySlidingWorkAverage.csv", index_col=0)
# print(k_days_into_future_regression(workMovingAverage21, fatigueSums, 0, 21))
wellness = pd.read_csv("../data_preparation/cleaned/time_series_normalized_wellness_menstruation.csv")
wellness = wellness.fillna(0)
x = wellness[['normSoreness', 'TimeSinceAugFirst']]
y = wellness['normFatigue']
print(wellness.isnull().sum())
print(standard_lr(x, y))
if __name__ == "__main__": if __name__ == "__main__":

Loading…
Cancel
Save