@ -0,0 +1,96 @@ | |||
import tensorflow as tf | |||
import pandas as pd | |||
import numpy as np | |||
def time_series_sigmoid_classification(X, Y, k, n0, x_columns, y_columns): | |||
inp = X[x_columns] | |||
out = Y[y_columns] | |||
col = "day" | |||
x = [] | |||
y = [] | |||
input_shape = 0 | |||
output_shape = 0 | |||
for player in Y["playerID"].unique(): | |||
XPlayer = inp[inp["playerID"] == player] | |||
YPlayer = out[out["playerID"] == player] | |||
for day in YPlayer[col][n0 - 1:]: | |||
prev = day - k | |||
xprev = XPlayer[XPlayer[col] == prev].drop(columns=[col]).to_numpy() | |||
if xprev.shape[0] != 1: | |||
continue | |||
else: | |||
xprev = xprev[0, :] | |||
yt = YPlayer[YPlayer[col] == day].drop(columns=[col]).to_numpy()[0, :] | |||
if input_shape == 0: | |||
input_shape = xprev.shape[0] | |||
else: | |||
if input_shape != xprev.shape[0]: | |||
print("INCONSISTENT INPUT DIMENSION") | |||
exit(2) | |||
if input_shape == 0: | |||
output_shape = yt.shape[0] | |||
else: | |||
if output_shape != yt.shape[0]: | |||
print("INCONSISTENT OUTPUT DIMENSION") | |||
exit(2) | |||
x.append(xprev) | |||
y.append(yt) | |||
x = np.array(x) | |||
y = np.array(y) | |||
model = tf.keras.Sequential([ | |||
tf.keras.layers.Flatten(input_shape=input_shape), | |||
tf.keras.layers.Dense(output_shape, activation=tf.nn.softmax) | |||
]) | |||
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy', 'categorical_accuracy']) | |||
model.fit(x, y, epochs=100) | |||
loss, accuracy = model.evaluate(x, y) | |||
print(loss, accuracy) | |||
return model.get_weights() | |||
def time_series_sigmoid_classification(X, Y, k, n0, x_columns, y_columns): | |||
inp = X[x_columns] | |||
out = Y[y_columns] | |||
col = "day" | |||
x = [] | |||
y = [] | |||
input_shape = 0 | |||
output_shape = 0 | |||
for player in Y["playerID"].unique(): | |||
XPlayer = inp[inp["playerID"] == player] | |||
YPlayer = out[out["playerID"] == player] | |||
for day in YPlayer[col][n0 - 1:]: | |||
prev = day - k | |||
xprev = XPlayer[XPlayer[col] == prev].drop(columns=[col]).to_numpy() | |||
if xprev.shape[0] != 1: | |||
continue | |||
else: | |||
xprev = xprev[0, :] | |||
yt = YPlayer[YPlayer[col] == day].drop(columns=[col]).to_numpy()[0, :] | |||
if input_shape == 0: | |||
input_shape = xprev.shape[0] | |||
else: | |||
if input_shape != xprev.shape[0]: | |||
print("INCONSISTENT INPUT DIMENSION") | |||
exit(2) | |||
if input_shape == 0: | |||
output_shape = yt.shape[0] | |||
else: | |||
if output_shape != yt.shape[0]: | |||
print("INCONSISTENT OUTPUT DIMENSION") | |||
exit(2) | |||
x.append(xprev) | |||
y.append(yt) | |||
x = np.array(x) | |||
y = np.array(y) | |||
model = tf.keras.Sequential([ | |||
tf.keras.layers.Flatten(input_shape=input_shape), | |||
tf.keras.layers.Dense(32), | |||
tf.keras.layers.Dense(output_shape, activation=tf.nn.softmax) | |||
]) | |||
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy', 'categorical_accuracy']) | |||
model.fit(x, y, epochs=100) | |||
loss, accuracy = model.evaluate(x, y) | |||
print(loss, accuracy) | |||
return model.get_weights() |