|
|
- class RepulsionSolver {
- constructor(body, physicsBody, options) {
- this.body = body;
- this.physicsBody = physicsBody;
- this.setOptions(options);
- }
-
- setOptions(options) {
- this.options = options;
- }
- /**
- * Calculate the forces the nodes apply on each other based on a repulsion field.
- * This field is linearly approximated.
- *
- * @private
- */
- solve() {
- var dx, dy, distance, fx, fy, repulsingForce, node1, node2;
-
- var nodes = this.body.nodes;
- var nodeIndices = this.physicsBody.physicsNodeIndices;
- var forces = this.physicsBody.forces;
-
- // repulsing forces between nodes
- var nodeDistance = this.options.nodeDistance;
-
- // approximation constants
- var a = (-2 / 3) / nodeDistance;
- var b = 4 / 3;
-
- // we loop from i over all but the last entree in the array
- // j loops from i+1 to the last. This way we do not double count any of the indices, nor i === j
- for (let i = 0; i < nodeIndices.length - 1; i++) {
- node1 = nodes[nodeIndices[i]];
- for (let j = i + 1; j < nodeIndices.length; j++) {
- node2 = nodes[nodeIndices[j]];
-
- dx = node2.x - node1.x;
- dy = node2.y - node1.y;
- distance = Math.sqrt(dx * dx + dy * dy);
-
- // same condition as BarnesHutSolver, making sure nodes are never 100% overlapping.
- if (distance === 0) {
- distance = 0.1*Math.random();
- dx = distance;
- }
-
- if (distance < 2 * nodeDistance) {
- if (distance < 0.5 * nodeDistance) {
- repulsingForce = 1.0;
- }
- else {
- repulsingForce = a * distance + b; // linear approx of 1 / (1 + Math.exp((distance / nodeDistance - 1) * steepness))
- }
- repulsingForce = repulsingForce / distance;
-
- fx = dx * repulsingForce;
- fy = dy * repulsingForce;
-
- forces[node1.id].x -= fx;
- forces[node1.id].y -= fy;
- forces[node2.id].x += fx;
- forces[node2.id].y += fy;
- }
- }
- }
- }
- }
-
-
- export default RepulsionSolver;
|