| @ -0,0 +1,122 @@ | |||
| """ | |||
| :Author: James Sherratt | |||
| :Date: 20/10/2019 | |||
| :License: MIT | |||
| :name: heapsort.py | |||
| Heap sorts a list-like object. Note: this has been written with code-clarity | |||
| in mind first, efficiency second. | |||
| """ | |||
| from random import randint | |||
| def get_left(i): | |||
| """ | |||
| Get the left element index of a heap node for an array. | |||
| :param i: The parent index. | |||
| :return: the left element. | |||
| """ | |||
| return 2 * i + 1 | |||
| def get_right(i): | |||
| """ | |||
| Get the right element index of a heap node for an array. | |||
| :param i: The parent index. | |||
| :return: the right element. | |||
| """ | |||
| return 2 * i + 2 | |||
| def repair_heap(vals_list, root, arr_top): | |||
| """ | |||
| Sifts the root element of a heap to the correct position, to | |||
| correct a max heap. This assumes the children of the root/ node are max heaps. | |||
| :param vals_list: list of values, which represents a heap structure. | |||
| :param root: the index of the node we're working from/ using as a root. | |||
| :param arr_top: the largest value of the list we're interested in. | |||
| :return: Reference to the passed list, with the root node in the correct position. | |||
| """ | |||
| # This is the value to swap. We want to swap the root value down, so we swap the root first. | |||
| swap = root | |||
| # Get left and right nodes of root. | |||
| left = get_left(root) | |||
| right = get_right(root) | |||
| while left < arr_top: | |||
| # Check if value to swap is less than the left child. | |||
| if vals_list[swap] < vals_list[left]: | |||
| swap = left | |||
| # Check if value to swap is less than the right child (if exists). | |||
| # Note: these 2 if's could be combined using "and", but then we're relying on lazy evaluation. | |||
| if right < arr_top: | |||
| if vals_list[swap] < vals_list[right]: | |||
| swap = right | |||
| # Check if the swap is still the root. If so, there's no more children to swap and we're done. | |||
| if swap == root: | |||
| return vals_list | |||
| # Else, swap. | |||
| else: | |||
| vals_list[root], vals_list[swap] = vals_list[swap], vals_list[root] | |||
| # New root, left and right node for the next iteration. | |||
| root = swap | |||
| left = get_left(root) | |||
| right = get_right(root) | |||
| return vals_list | |||
| def max_heap(vals_list): | |||
| """ | |||
| Convert a list of values into a max heap tree. | |||
| :param vals_list: list of numbers. | |||
| :return: the same list as a max heap tree. | |||
| """ | |||
| # Create a max heap by repairing the heap, starting from the nodes one above the leaf nodes. | |||
| len_list = len(vals_list) | |||
| for root in range(len_list//2, -1, -1): | |||
| repair_heap(vals_list, root, len_list) | |||
| return vals_list | |||
| def max_heap_to_sorted(vals_list): | |||
| """ | |||
| Convert a max heap list into a sorted list. | |||
| :param vals_list: list containing max heap. | |||
| :return: the same list of values, sorted. | |||
| """ | |||
| # i is the index of the last element of the slice of the array that needs sorting. | |||
| for top in range(len(vals_list)-1, 0, -1): | |||
| # Swap the root value (max) with the last value of the slice. | |||
| vals_list[0], vals_list[top] = vals_list[top], vals_list[0] | |||
| # Sift the new root to the correct position of the remainder of the max heap. | |||
| # Another way of doing this is to pass a slice of the vals_list up to the value top, but python passes | |||
| # slices by copy so there's a massive performance hit. | |||
| repair_heap(vals_list, 0, top) | |||
| return vals_list | |||
| def heapsort(vals_list): | |||
| """ | |||
| Sort a list of values using heapsort. | |||
| :param vals_list: list of sortable values. | |||
| :return: the same list, sorted. | |||
| """ | |||
| max_heap(vals_list) | |||
| return max_heap_to_sorted(vals_list) | |||
| if __name__ == "__main__": | |||
| list_len = 100000 | |||
| vals_list = [randint(0, (2**16)) for i in range(list_len)] | |||
| heap_sorted = heapsort(list(vals_list)) | |||
| py_sorted = sorted(vals_list) | |||
| print("Did the sort work? {}".format(heap_sorted == py_sorted)) | |||