| @ -0,0 +1,122 @@ | |||||
| """ | |||||
| :Author: James Sherratt | |||||
| :Date: 20/10/2019 | |||||
| :License: MIT | |||||
| :name: heapsort.py | |||||
| Heap sorts a list-like object. Note: this has been written with code-clarity | |||||
| in mind first, efficiency second. | |||||
| """ | |||||
| from random import randint | |||||
| def get_left(i): | |||||
| """ | |||||
| Get the left element index of a heap node for an array. | |||||
| :param i: The parent index. | |||||
| :return: the left element. | |||||
| """ | |||||
| return 2 * i + 1 | |||||
| def get_right(i): | |||||
| """ | |||||
| Get the right element index of a heap node for an array. | |||||
| :param i: The parent index. | |||||
| :return: the right element. | |||||
| """ | |||||
| return 2 * i + 2 | |||||
| def repair_heap(vals_list, root, arr_top): | |||||
| """ | |||||
| Sifts the root element of a heap to the correct position, to | |||||
| correct a max heap. This assumes the children of the root/ node are max heaps. | |||||
| :param vals_list: list of values, which represents a heap structure. | |||||
| :param root: the index of the node we're working from/ using as a root. | |||||
| :param arr_top: the largest value of the list we're interested in. | |||||
| :return: Reference to the passed list, with the root node in the correct position. | |||||
| """ | |||||
| # This is the value to swap. We want to swap the root value down, so we swap the root first. | |||||
| swap = root | |||||
| # Get left and right nodes of root. | |||||
| left = get_left(root) | |||||
| right = get_right(root) | |||||
| while left < arr_top: | |||||
| # Check if value to swap is less than the left child. | |||||
| if vals_list[swap] < vals_list[left]: | |||||
| swap = left | |||||
| # Check if value to swap is less than the right child (if exists). | |||||
| # Note: these 2 if's could be combined using "and", but then we're relying on lazy evaluation. | |||||
| if right < arr_top: | |||||
| if vals_list[swap] < vals_list[right]: | |||||
| swap = right | |||||
| # Check if the swap is still the root. If so, there's no more children to swap and we're done. | |||||
| if swap == root: | |||||
| return vals_list | |||||
| # Else, swap. | |||||
| else: | |||||
| vals_list[root], vals_list[swap] = vals_list[swap], vals_list[root] | |||||
| # New root, left and right node for the next iteration. | |||||
| root = swap | |||||
| left = get_left(root) | |||||
| right = get_right(root) | |||||
| return vals_list | |||||
| def max_heap(vals_list): | |||||
| """ | |||||
| Convert a list of values into a max heap tree. | |||||
| :param vals_list: list of numbers. | |||||
| :return: the same list as a max heap tree. | |||||
| """ | |||||
| # Create a max heap by repairing the heap, starting from the nodes one above the leaf nodes. | |||||
| len_list = len(vals_list) | |||||
| for root in range(len_list//2, -1, -1): | |||||
| repair_heap(vals_list, root, len_list) | |||||
| return vals_list | |||||
| def max_heap_to_sorted(vals_list): | |||||
| """ | |||||
| Convert a max heap list into a sorted list. | |||||
| :param vals_list: list containing max heap. | |||||
| :return: the same list of values, sorted. | |||||
| """ | |||||
| # i is the index of the last element of the slice of the array that needs sorting. | |||||
| for top in range(len(vals_list)-1, 0, -1): | |||||
| # Swap the root value (max) with the last value of the slice. | |||||
| vals_list[0], vals_list[top] = vals_list[top], vals_list[0] | |||||
| # Sift the new root to the correct position of the remainder of the max heap. | |||||
| # Another way of doing this is to pass a slice of the vals_list up to the value top, but python passes | |||||
| # slices by copy so there's a massive performance hit. | |||||
| repair_heap(vals_list, 0, top) | |||||
| return vals_list | |||||
| def heapsort(vals_list): | |||||
| """ | |||||
| Sort a list of values using heapsort. | |||||
| :param vals_list: list of sortable values. | |||||
| :return: the same list, sorted. | |||||
| """ | |||||
| max_heap(vals_list) | |||||
| return max_heap_to_sorted(vals_list) | |||||
| if __name__ == "__main__": | |||||
| list_len = 100000 | |||||
| vals_list = [randint(0, (2**16)) for i in range(list_len)] | |||||
| heap_sorted = heapsort(list(vals_list)) | |||||
| py_sorted = sorted(vals_list) | |||||
| print("Did the sort work? {}".format(heap_sorted == py_sorted)) | |||||