Added Basic Neural Networkpull/26/head
| @ -0,0 +1,23 @@ | |||||
| from torch import nn | |||||
| class BasicNeuralNet(nn.Module): | |||||
| def __init__(self): | |||||
| super().__init__() | |||||
| # Inputs to hidden layer linear transformation | |||||
| self.hidden = nn.Linear(784, 256) | |||||
| # Output layer, 10 units | |||||
| self.output = nn.Linear(256, 10) | |||||
| # Define sigmoid activation and softmax output | |||||
| self.sigmoid = nn.Sigmoid() | |||||
| self.softmax = nn.Softmax(dim=1) | |||||
| def forward(self, x): | |||||
| # Pass the input tensor through each of the operations | |||||
| x = self.hidden(x) | |||||
| x = self.sigmoid(x) | |||||
| x = self.output(x) | |||||
| x = self.softmax(x) | |||||
| return x | |||||
| @ -0,0 +1,16 @@ | |||||
| import torch.nn as nn | |||||
| import torch.nn.functional as F | |||||
| # CNN architecture definition | |||||
| class Net(nn.Module): | |||||
| def __init__(self): | |||||
| super(Net, self).__init__() | |||||
| # convolutional layer | |||||
| self.conv1 = nn.Conv2d(3, 16, 3, padding=1) | |||||
| # max pooling layer | |||||
| self.pool = nn.MaxPool2d(2, 2) | |||||
| def forward(self, x): | |||||
| # add sequence of convolutional and max pooling layers | |||||
| x = self.pool(F.relu(self.conv1(x))) | |||||
| return x | |||||