|
|
- from torch import nn
-
- class BasicNeuralNet(nn.Module):
- def __init__(self):
- super().__init__()
-
- # Inputs to hidden layer linear transformation
- self.hidden = nn.Linear(784, 256)
- # Output layer, 10 units
- self.output = nn.Linear(256, 10)
-
- # Define sigmoid activation and softmax output
- self.sigmoid = nn.Sigmoid()
- self.softmax = nn.Softmax(dim=1)
-
- def forward(self, x):
- # Pass the input tensor through each of the operations
- x = self.hidden(x)
- x = self.sigmoid(x)
- x = self.output(x)
- x = self.softmax(x)
-
- return x
|