|
|
- source("readData.R")
-
- library(tidyverse)
-
-
- RPEData <-readNArpeData()
-
- games <- readGameRandChanges
-
-
- numDays <- max(RPEData$TimeSinceAugFirst)
-
-
- dayList <- 0:numDays
- workLoad <- c()
- averageWorkLoad <- c()
-
-
- for(day in dayList)
- {
- daylyActivities <- subset(RPEData, TimeSinceAugFirst == day)
- cat("day: ", day, "\n",sep="")
- cat("Activity count:", length(daylyActivities$DailyLoad), "\n", sep="")
-
- averageWorkLoad <- c(averageWorkLoad, mean(daylyActivities$SessionLoad, na.rm = T))
- workLoad <- c(workLoad, sum(daylyActivities$SessionLoad, na.rm = T))
- }
-
- plot(dayList, averageWorkLoad, main="Average Work Load")
- plot(dayList, workLoad, main="Daily Total Work Load")
-
-
-
- fatigueFunction <- function(workLoad, index)
- {
- if(index == 1)
- {
- return(workLoad[1])
- }
- else
- {
- return(workLoad[index] + (exp(1)^(-1/15))*fatigueFunction(workLoad, index -1))
- }
- }
-
- smoothedWork <- c()
- for(day in dayList)
- {
- smoothedWork <- c(smoothedWork, fatigueFunction(workLoad, day + 1))
- }
-
- plot(dayList, smoothedFatigue)
-
-
-
- fatigueData <- readFatigueSums()
-
- dayNum <- max(fatigueData$TimeSinceAugFirst)
-
- dayList <- 0:dayNum
-
-
- slidingAverage <- c()
- window <- 21 - 1
- for(day in window:dayNum)
- {
- windowAverage <- mean(fatigueData$fatigueSum[c((day-window):day)], na.rm = T)
-
- slidingAverage <- c(slidingAverage, windowAverage)
- }
-
- smoothedFatigueData <- c()
- for(day in dayList)
- {
- smoothedFatigueData <- c(smoothedFatigueData, fatigueFunction(fatigueData$fatigueSum, day + 1))
- }
-
- plot(dayList, smoothedFatigueData)
-
-
- workTibble <- tibble(day = dayList, totalWork = workLoad,
- averageWorkLoad = averageWorkLoad,
- smoothedWork = smoothedWork,
- smoothedFatigueData = smoothedFatigueData)
-
- plot(workTibble$totalWork, fatigueData$fatigueSum[-1])
-
- workGraph <- ggplot(data = workTibble) +
- theme(plot.title = element_text(hjust = 0.5)) +
- ggtitle("Team's Smoothed Work") +
- geom_point(mapping = aes(x=day, y=smoothedWork)) +
- labs(x = "Days Since August First 2017", y = "Teams Training Work")+
- theme_bw()
-
- fatGraph <- ggplot(data = workTibble) +
- theme(plot.title = element_text(hjust = 0.5)) +
- ggtitle("Team's Percieved Fatigue") +
- geom_point(mapping = aes(x=day, y=smoothedFatigueData)) +
- labs(x = "Days Since August First 2017", y = "Teams Average Normalized Fatigue")+
- theme_bw()
-
-
- ggplot(data = workTibble) +
- theme(plot.title = element_text(hjust = 0.5)) +
- ggtitle("Team's Percieved Fatigue") +
- geom_point(mapping = aes(x=smoothedWork, y=smoothedFatigueData)) +
- labs(x = "Smoothed Work Per Day", y = "Teams Average Normalized Fatigue")+
- theme_bw()
-
-
- for(gameDay in games$Date)
- {
- fatGraph <- fatGraph + geom_vline(xintercept = gameDay, linetype="dotted",
- color = "blue", size=1.0)
- workGraph <- workGraph + geom_vline(xintercept = gameDay, linetype="dotted",
- color = "blue", size=1.0)
- }
-
-
-
- workGraph
- fatGraph
-
- write.csv(workTibble, "cleaned/expSmoothWorkAndFatigueData.csv")
-
-
-
- slidingAverage <- c()
-
- window <- 31 - 1
- for(day in window:numDays)
- {
- windowAverage <- mean(workLoad[c((day-window):day)])
- slidingAverage <- c(slidingAverage, windowAverage)
- }
-
-
-
- plot(window:numDays, slidingAverage, main="Sliding Average")
- plot(density(slidingAverage), main="Sliding Average Density")
- plot(density(workLoad), main="Total Work Load Average")
-
-
- dataTibble <- tibble(TimeSinceAugFirst = window:numDays, slidingWorkAverage = slidingAverage)
-
-
- workGraph <- ggplot(data = dataTibble) +
- theme(plot.title = element_text(hjust = 0.5)) +
- ggtitle("Team's 7 Day Moving Average") +
- geom_point(mapping = aes(x=TimeSinceAugFirst, y=slidingWorkAverage)) +
- labs(x = "Days Since August Seventh 2017", y = "Teams Total Daily Load")+
- theme_bw()
-
-
- for(gameDay in games$Date)
- {
- workGraph <- workGraph + geom_vline(xintercept = gameDay, linetype="dotted",
- color = "blue", size=1.0)
- }
-
- workGraph
-
-
- write.csv(dataTibble, "cleaned/slidingWorkAverageSevenDay.csv")
-
-
- ################################ Wellness Data ###################################
-
-
-
- graphingTib <- tibble(slidingAverage = slidingAverage, days = window:dayNum)
-
- fGraph <- ggplot(data = graphingTib) +
- theme(plot.title = element_text(hjust = 0.5)) +
- ggtitle("Team's Average Normalized Fatigue") +
- geom_point(mapping = aes(x=days, y=slidingAverage)) +
- labs(x = "Days Since August Twenty First 2017", y = "Teams Average Normalized Fatigue")+
- theme_bw()
-
-
- for(gameDay in games$Date)
- {
- fGraph <- fGraph + geom_vline(xintercept = gameDay, linetype="dotted",
- color = "blue", size=1.0)
- }
-
- fGraph
-
- plot(density(slidingAverage))
- plot(window:dayNum, slidingAverage)
|