vis.js is a dynamic, browser-based visualization library
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

671 lines
20 KiB

import PhysicsBase from './PhysicsBase';
import PhysicsWorker from 'worker!./PhysicsWorkerWrapper';
var util = require('../../util');
class PhysicsEngine extends PhysicsBase {
constructor(body) {
super();
this.body = body;
this.physicsEnabled = true;
this.simulationInterval = 1000 / 60;
this.requiresTimeout = true;
this.freezeCache = {};
this.renderTimer = undefined;
// parameters for the adaptive timestep
this.adaptiveTimestep = false;
this.adaptiveTimestepEnabled = false;
this.adaptiveCounter = 0;
this.adaptiveInterval = 3;
this.ready = false; // will be set to true if the stabilize
// default options
this.defaultOptions = {
enabled: true,
useWorker: false,
barnesHut: {
theta: 0.5,
gravitationalConstant: -2000,
centralGravity: 0.3,
springLength: 95,
springConstant: 0.04,
damping: 0.09,
avoidOverlap: 0
},
forceAtlas2Based: {
theta: 0.5,
gravitationalConstant: -50,
centralGravity: 0.01,
springConstant: 0.08,
springLength: 100,
damping: 0.4,
avoidOverlap: 0
},
repulsion: {
centralGravity: 0.2,
springLength: 200,
springConstant: 0.05,
nodeDistance: 100,
damping: 0.09,
avoidOverlap: 0
},
hierarchicalRepulsion: {
centralGravity: 0.0,
springLength: 100,
springConstant: 0.01,
nodeDistance: 120,
damping: 0.09
},
maxVelocity: 50,
minVelocity: 0.75, // px/s
solver: 'barnesHut',
stabilization: {
enabled: true,
iterations: 1000, // maximum number of iteration to stabilize
updateInterval: 50,
onlyDynamicEdges: false,
fit: true
},
timestep: 0.5,
adaptiveTimestep: true
};
util.extend(this.options, this.defaultOptions);
this.layoutFailed = false;
this.draggingNodes = [];
this.positionUpdateHandler = () => {};
this.physicsUpdateHandler = () => {};
this.emit = this.body.emitter.emit;
this.bindEventListeners();
}
bindEventListeners() {
this.body.emitter.on('initPhysics', () => {this.initPhysics();});
this.body.emitter.on('_layoutFailed', () => {this.layoutFailed = true;});
this.body.emitter.on('resetPhysics', () => {this.stopSimulation(); this.ready = false;});
this.body.emitter.on('disablePhysics', () => {this.physicsEnabled = false; this.stopSimulation();});
this.body.emitter.on('restorePhysics', () => {
this.setOptions(this.options);
if (this.ready === true) {
this.startSimulation();
}
});
this.body.emitter.on('startSimulation', () => {
if (this.ready === true) {
this.startSimulation();
}
});
this.body.emitter.on('stopSimulation', () => {this.stopSimulation();});
this.body.emitter.on('destroy', () => {
this.stopSimulation(false);
this.body.emitter.off();
});
this.body.emitter.on('_positionUpdate', (properties) => this.positionUpdateHandler(properties));
this.body.emitter.on('_physicsUpdate', (properties) => this.physicsUpdateHandler(properties));
// For identifying which nodes to send to worker thread
this.body.emitter.on('dragStart', (properties) => {
this.draggingNodes = properties.nodes;
});
this.body.emitter.on('dragEnd', () => {
this.draggingNodes = [];
});
this.body.emitter.on('destroy', () => {
if (this.physicsWorker) {
this.physicsWorker.terminate();
this.physicsWorker = undefined;
}
});
}
/**
* set the physics options
* @param options
*/
setOptions(options) {
if (options !== undefined) {
if (options === false) {
this.options.enabled = false;
this.physicsEnabled = false;
this.stopSimulation();
}
else {
this.physicsEnabled = true;
util.selectiveNotDeepExtend(['stabilization'], this.options, options);
util.mergeOptions(this.options, options, 'stabilization')
if (options.enabled === undefined) {
this.options.enabled = true;
}
if (this.options.enabled === false) {
this.physicsEnabled = false;
this.stopSimulation();
}
// set the timestep
this.timestep = this.options.timestep;
}
}
if (this.options.useWorker) {
this.initPhysicsWorker();
this.physicsWorker.postMessage({type: 'options', data: this.options});
} else {
this.initEmbeddedPhysics();
}
}
/**
* configure the engine.
*/
initEmbeddedPhysics() {
this.positionUpdateHandler = () => {};
this.physicsUpdateHandler = () => {};
if (this.physicsWorker) {
this.options.useWorker = false;
this.physicsWorker.terminate();
this.physicsWorker = undefined;
this.initPhysicsData();
}
this.initPhysicsSolvers();
}
initPhysicsWorker() {
if (!this.physicsWorker) {
// setup path to webworker javascript file
if (!__webpack_public_path__) {
let parentScript = document.getElementById('visjs');
if (parentScript) {
let src = parentScript.getAttribute('src')
__webpack_public_path__ = src.substr(0, src.lastIndexOf('/') + 1);
} else {
let scripts = document.getElementsByTagName('script');
for (let i = 0; i < scripts.length; i++) {
let src = scripts[i].getAttribute('src');
if (src && src.length >= 6) {
let position = src.length - 6;
let index = src.indexOf('vis.js', position);
if (index === position) {
__webpack_public_path__ = src.substr(0, src.lastIndexOf('/') + 1);
break;
}
}
}
}
}
// launch webworker
this.physicsWorker = new PhysicsWorker();
this.physicsWorker.addEventListener('message', (event) => {
this.physicsWorkerMessageHandler(event);
});
this.physicsWorker.onerror = (event) => {
console.error('Falling back to embedded physics engine', event);
this.initEmbeddedPhysics();
// throw new Error(event.message + " (" + event.filename + ":" + event.lineno + ")");
};
this.positionUpdateHandler = (positions) => {
this.physicsWorker.postMessage({type: 'updatePositions', data: positions});
};
this.physicsUpdateHandler = (properties) => {
this._physicsUpdateHandler(properties);
};
}
}
_physicsUpdateHandler(properties) {
if (properties.options.physics !== undefined) {
if (properties.options.physics) {
let data = {
nodes: {},
edges: {}
};
if (properties.type === 'node') {
data.nodes[properties.id] = this.createPhysicsNode(properties.id);
} else if (properties.type === 'edge') {
data.edges[properties.id] = this.createPhysicsEdge(properties.id);
} else {
console.warn('invalid element type');
}
this.physicsWorker.postMessage({
type: 'addElements',
data: data
});
} else {
let data = {
nodeIds: [],
edgeIds: []
};
if (properties.type === 'node') {
data.nodeIds = [properties.id.toString()];
} else if (properties.type === 'edge') {
data.edgeIds = [properties.id.toString()];
} else {
console.warn('invalid element type');
}
this.physicsWorker.postMessage({type: 'removeElements', data: data});
}
} else {
this.physicsWorker.postMessage({type: 'updateProperties', data: properties});
}
}
physicsWorkerMessageHandler(event) {
var msg = event.data;
switch (msg.type) {
case 'positions':
this.stabilized = msg.data.stabilized;
this._receivedPositions(msg.data.positions);
break;
case 'finalizeStabilization':
this.stabilizationIterations = msg.data.stabilizationIterations;
this._finalizeStabilization();
break;
case 'emit':
this.emit(msg.data.event, msg.data.data);
break;
default:
console.warn('unhandled physics worker message:', msg);
}
}
_receivedPositions(positions) {
for (let i = 0; i < this.draggingNodes.length; i++) {
delete positions[this.draggingNodes[i]];
}
let nodeIds = Object.keys(positions);
for (let i = 0; i < nodeIds.length; i++) {
let nodeId = nodeIds[i];
let node = this.body.nodes[nodeId];
// handle case where we get a positions from an old physicsObject
if (node) {
node.setX(positions[nodeId].x);
node.setY(positions[nodeId].y);
}
}
}
/**
* initialize the engine
*/
initPhysics() {
if (this.physicsEnabled === true && this.options.enabled === true) {
if (this.options.stabilization.enabled === true) {
this.stabilize();
}
else {
this.stabilized = false;
this.ready = true;
this.body.emitter.emit('fit', {}, this.layoutFailed); // if the layout failed, we use the approximation for the zoom
this.startSimulation();
}
}
else {
this.ready = true;
this.body.emitter.emit('fit');
}
}
/**
* Start the simulation
*/
startSimulation() {
if (this.physicsEnabled === true && this.options.enabled === true) {
this.stabilized = false;
// when visible, adaptivity is disabled.
this.adaptiveTimestep = false;
// this sets the width of all nodes initially which could be required for the avoidOverlap
this.body.emitter.emit("_resizeNodes");
if (this.viewFunction === undefined) {
this.viewFunction = this.simulationStep.bind(this);
this.body.emitter.on('initRedraw', this.viewFunction);
this.body.emitter.emit('_startRendering');
}
}
else {
this.body.emitter.emit('_redraw');
}
}
/**
* Stop the simulation, force stabilization.
*/
stopSimulation(emit = true) {
this.stabilized = true;
if (emit === true) {
this._emitStabilized();
}
if (this.viewFunction !== undefined) {
this.body.emitter.off('initRedraw', this.viewFunction);
this.viewFunction = undefined;
if (emit === true) {
this.body.emitter.emit('_stopRendering');
}
}
}
/**
* The viewFunction inserts this step into each renderloop. It calls the physics tick and handles the cleanup at stabilized.
*
*/
simulationStep() {
if (this.physicsWorker) {
this.physicsWorker.postMessage({type: 'physicsTick'});
} else {
// check if the physics have settled
var startTime = Date.now();
this.physicsTick();
var physicsTime = Date.now() - startTime;
// run double speed if it is a little graph
if ((physicsTime < 0.4 * this.simulationInterval || this.runDoubleSpeed === true) && this.stabilized === false) {
this.physicsTick();
// this makes sure there is no jitter. The decision is taken once to run it at double speed.
this.runDoubleSpeed = true;
}
}
if (this.stabilized === true) {
this.stopSimulation();
}
}
// TODO determine when startedStabilization needs to be propogated from the worker
/**
* trigger the stabilized event.
* @private
*/
_emitStabilized(amountOfIterations = this.stabilizationIterations) {
if (this.stabilizationIterations > 1 || this.startedStabilization === true) {
setTimeout(() => {
this.body.emitter.emit('stabilized', {iterations: amountOfIterations});
this.startedStabilization = false;
this.stabilizationIterations = 0;
}, 0);
}
}
createPhysicsNode(nodeId) {
let node = this.body.nodes[nodeId];
if (node) {
return {
id: node.id.toString(),
x: node.x,
y: node.y,
// TODO update on change
edges: {
length: node.edges.length
},
options: {
fixed: {
x: node.options.fixed.x,
y: node.options.fixed.y
},
mass: node.options.mass
}
}
}
}
createPhysicsEdge(edgeId) {
let edge = this.body.edges[edgeId];
if (edge && edge.options.physics === true) {
let physicsEdge = {
id: edge.id,
connected: edge.connected,
edgeType: {},
toId: edge.toId,
fromId: edge.fromId,
options: {
length: edge.length
}
};
// TODO test/implment dynamic
if (edge.edgeType.via) {
physicsEdge.edgeType = {
via: {
id: edge.edgeType.via.id
}
}
}
return physicsEdge;
}
}
/**
* Nodes and edges can have the physics toggles on or off. A collection of indices is created here so we can skip the check all the time.
*
* @private
*/
initPhysicsData() {
let nodes = this.body.nodes;
let edges = this.body.edges;
this.physicsBody.forces = {};
this.physicsBody.physicsNodeIndices = [];
this.physicsBody.physicsEdgeIndices = [];
let physicsWorkerNodes = {};
let physicsWorkerEdges = {};
// get node indices for physics
for (let nodeId in nodes) {
if (nodes.hasOwnProperty(nodeId)) {
if (nodes[nodeId].options.physics === true) {
this.physicsBody.physicsNodeIndices.push(nodeId);
if (this.physicsWorker) {
physicsWorkerNodes[nodeId] = this.createPhysicsNode(nodeId);
}
}
}
}
// get edge indices for physics
for (let edgeId in edges) {
if (edges.hasOwnProperty(edgeId)) {
if (edges[edgeId].options.physics === true) {
this.physicsBody.physicsEdgeIndices.push(edgeId);
if (this.physicsWorker) {
physicsWorkerEdges[edgeId] = this.createPhysicsEdge(edgeId);
}
}
}
}
// get the velocity and the forces vector
for (let i = 0; i < this.physicsBody.physicsNodeIndices.length; i++) {
let nodeId = this.physicsBody.physicsNodeIndices[i];
this.physicsBody.forces[nodeId] = {x: 0, y: 0};
// forces can be reset because they are recalculated. Velocities have to persist.
if (this.physicsBody.velocities[nodeId] === undefined) {
this.physicsBody.velocities[nodeId] = {x: 0, y: 0};
}
}
// clean deleted nodes from the velocity vector
for (let nodeId in this.physicsBody.velocities) {
if (nodes[nodeId] === undefined) {
delete this.physicsBody.velocities[nodeId];
}
}
if (this.physicsWorker) {
this.physicsWorker.postMessage({
type: 'initPhysicsData',
data: {
nodes: physicsWorkerNodes,
edges: physicsWorkerEdges
}
});
}
}
/**
* Perform the actual step
*
* @param nodeId
* @param maxVelocity
* @returns {number}
* @private
*/
_performStep(nodeId,maxVelocity) {
let node = this.body.nodes[nodeId];
let timestep = this.timestep;
let forces = this.physicsBody.forces;
let velocities = this.physicsBody.velocities;
// store the state so we can revert
this.previousStates[nodeId] = {x:node.x, y:node.y, vx:velocities[nodeId].x, vy:velocities[nodeId].y};
if (node.options.fixed.x === false) {
let dx = this.modelOptions.damping * velocities[nodeId].x; // damping force
let ax = (forces[nodeId].x - dx) / node.options.mass; // acceleration
velocities[nodeId].x += ax * timestep; // velocity
velocities[nodeId].x = (Math.abs(velocities[nodeId].x) > maxVelocity) ? ((velocities[nodeId].x > 0) ? maxVelocity : -maxVelocity) : velocities[nodeId].x;
node.setX(node.x + velocities[nodeId].x * timestep); // position
}
else {
forces[nodeId].x = 0;
velocities[nodeId].x = 0;
}
if (node.options.fixed.y === false) {
let dy = this.modelOptions.damping * velocities[nodeId].y; // damping force
let ay = (forces[nodeId].y - dy) / node.options.mass; // acceleration
velocities[nodeId].y += ay * timestep; // velocity
velocities[nodeId].y = (Math.abs(velocities[nodeId].y) > maxVelocity) ? ((velocities[nodeId].y > 0) ? maxVelocity : -maxVelocity) : velocities[nodeId].y;
node.setY(node.y + velocities[nodeId].y * timestep); // position
}
else {
forces[nodeId].y = 0;
velocities[nodeId].y = 0;
}
let totalVelocity = Math.sqrt(Math.pow(velocities[nodeId].x,2) + Math.pow(velocities[nodeId].y,2));
return totalVelocity;
}
/**
* When initializing and stabilizing, we can freeze nodes with a predefined position. This greatly speeds up stabilization
* because only the supportnodes for the smoothCurves have to settle.
*
* @private
*/
_freezeNodes() {
var nodes = this.body.nodes;
for (var id in nodes) {
if (nodes.hasOwnProperty(id)) {
if (nodes[id].x && nodes[id].y) {
this.freezeCache[id] = {x:nodes[id].options.fixed.x,y:nodes[id].options.fixed.y};
nodes[id].setFixed(true);
}
}
}
}
/**
* Unfreezes the nodes that have been frozen by _freezeDefinedNodes.
*
* @private
*/
_restoreFrozenNodes() {
var nodes = this.body.nodes;
for (var id in nodes) {
if (nodes.hasOwnProperty(id)) {
if (this.freezeCache[id] !== undefined) {
nodes[id].setFixed({x: this.freezeCache[id].x, y: this.freezeCache[id].y});
}
}
}
this.freezeCache = {};
}
/**
* Find a stable position for all nodes
* @private
*/
stabilize(iterations = this.options.stabilization.iterations) {
if (typeof iterations !== 'number') {
console.log('The stabilize method needs a numeric amount of iterations. Switching to default: ', this.options.stabilization.iterations);
iterations = this.options.stabilization.iterations;
}
if (this.physicsBody.physicsNodeIndices.length === 0) {
this.ready = true;
return;
}
// enable adaptive timesteps
this.adaptiveTimestep = true && this.options.adaptiveTimestep;
// this sets the width of all nodes initially which could be required for the avoidOverlap
this.body.emitter.emit("_resizeNodes");
// stop the render loop
this.stopSimulation();
// set stabilize to false
this.stabilized = false;
// block redraw requests
this.body.emitter.emit('_blockRedraw');
this.targetIterations = iterations;
// start the stabilization
if (this.options.stabilization.onlyDynamicEdges === true) {
this._freezeNodes();
}
this.stabilizationIterations = 0;
if (this.physicsWorker) {
this.physicsWorker.postMessage({
type: 'stabilization',
data: {
targetIterations: iterations
}
});
} else {
setTimeout(() => this._stabilizationBatch(), 0);
}
}
/**
* Wrap up the stabilization, fit and emit the events.
* @private
*/
_finalizeStabilization() {
this.body.emitter.emit('_allowRedraw');
if (this.options.stabilization.fit === true) {
this.body.emitter.emit('fit');
}
if (this.options.stabilization.onlyDynamicEdges === true) {
this._restoreFrozenNodes();
}
this.body.emitter.emit('stabilizationIterationsDone');
this.body.emitter.emit('_requestRedraw');
if (this.stabilized === true) {
this._emitStabilized();
}
else {
this.startSimulation();
}
this.ready = true;
}
}
export default PhysicsEngine;