vis.js is a dynamic, browser-based visualization library
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

255 lines
9.4 KiB

import BarnesHutSolver from './components/physics/BarnesHutSolver';
import Repulsion from './components/physics/RepulsionSolver';
import HierarchicalRepulsion from './components/physics/HierarchicalRepulsionSolver';
import SpringSolver from './components/physics/SpringSolver';
import HierarchicalSpringSolver from './components/physics/HierarchicalSpringSolver';
import CentralGravitySolver from './components/physics/CentralGravitySolver';
import ForceAtlas2BasedRepulsionSolver from './components/physics/FA2BasedRepulsionSolver';
import ForceAtlas2BasedCentralGravitySolver from './components/physics/FA2BasedCentralGravitySolver';
class PhysicsBase {
constructor() {
this.physicsBody = {physicsNodeIndices:[], physicsEdgeIndices:[], forces: {}, velocities: {}};
this.options = {};
this.referenceState = {};
this.previousStates = {};
this.startedStabilization = false;
this.stabilized = false;
this.stabilizationIterations = 0;
this.timestep = 0.5;
}
/**
* configure the engine.
*/
initPhysicsSolvers() {
var options;
if (this.options.solver === 'forceAtlas2Based') {
options = this.options.forceAtlas2Based;
this.nodesSolver = new ForceAtlas2BasedRepulsionSolver(this.body, this.physicsBody, options);
this.edgesSolver = new SpringSolver(this.body, this.physicsBody, options);
this.gravitySolver = new ForceAtlas2BasedCentralGravitySolver(this.body, this.physicsBody, options);
}
else if (this.options.solver === 'repulsion') {
options = this.options.repulsion;
this.nodesSolver = new Repulsion(this.body, this.physicsBody, options);
this.edgesSolver = new SpringSolver(this.body, this.physicsBody, options);
this.gravitySolver = new CentralGravitySolver(this.body, this.physicsBody, options);
}
else if (this.options.solver === 'hierarchicalRepulsion') {
options = this.options.hierarchicalRepulsion;
this.nodesSolver = new HierarchicalRepulsion(this.body, this.physicsBody, options);
this.edgesSolver = new HierarchicalSpringSolver(this.body, this.physicsBody, options);
this.gravitySolver = new CentralGravitySolver(this.body, this.physicsBody, options);
}
else { // barnesHut
options = this.options.barnesHut;
this.nodesSolver = new BarnesHutSolver(this.body, this.physicsBody, options);
this.edgesSolver = new SpringSolver(this.body, this.physicsBody, options);
this.gravitySolver = new CentralGravitySolver(this.body, this.physicsBody, options);
}
this.modelOptions = options;
}
/**
* A single simulation step (or 'tick') in the physics simulation
*
* @private
*/
physicsTick() {
// this is here to ensure that there is no start event when the network is already stable.
if (this.startedStabilization === false) {
this.emit('startStabilizing');
this.startedStabilization = true;
}
if (this.stabilized === false) {
// adaptivity means the timestep adapts to the situation, only applicable for stabilization
if (this.adaptiveTimestep === true && this.adaptiveTimestepEnabled === true) {
// this is the factor for increasing the timestep on success.
let factor = 1.2;
// we assume the adaptive interval is
if (this.adaptiveCounter % this.adaptiveInterval === 0) { // we leave the timestep stable for "interval" iterations.
// first the big step and revert. Revert saves the reference state.
this.timestep = 2 * this.timestep;
this.calculateForces();
this.moveNodes();
this.revert();
// now the normal step. Since this is the last step, it is the more stable one and we will take this.
this.timestep = 0.5 * this.timestep;
// since it's half the step, we do it twice.
this.calculateForces();
this.moveNodes();
this.calculateForces();
this.moveNodes();
// we compare the two steps. if it is acceptable we double the step.
if (this._evaluateStepQuality() === true) {
this.timestep = factor * this.timestep;
}
else {
// if not, we decrease the step to a minimum of the options timestep.
// if the decreased timestep is smaller than the options step, we do not reset the counter
// we assume that the options timestep is stable enough.
if (this.timestep/factor < this.options.timestep) {
this.timestep = this.options.timestep;
}
else {
// if the timestep was larger than 2 times the option one we check the adaptivity again to ensure
// that large instabilities do not form.
this.adaptiveCounter = -1; // check again next iteration
this.timestep = Math.max(this.options.timestep, this.timestep/factor);
}
}
}
else {
// normal step, keeping timestep constant
this.calculateForces();
this.moveNodes();
}
// increment the counter
this.adaptiveCounter += 1;
}
else {
// case for the static timestep, we reset it to the one in options and take a normal step.
this.timestep = this.options.timestep;
this.calculateForces();
this.moveNodes();
}
// determine if the network has stabilzied
if (this.stabilized === true) {
this.revert();
}
this.stabilizationIterations++;
}
}
/**
* Revert the simulation one step. This is done so after stabilization, every new start of the simulation will also say stabilized.
*/
revert() {
var nodeIds = Object.keys(this.previousStates);
var nodes = this.body.nodes;
var velocities = this.physicsBody.velocities;
this.referenceState = {};
for (let i = 0; i < nodeIds.length; i++) {
let nodeId = nodeIds[i];
if (nodes[nodeId] !== undefined) {
if (this.isWorker || nodes[nodeId].options.physics === true) {
this.referenceState[nodeId] = {
positions: {x:nodes[nodeId].x, y:nodes[nodeId].y}
};
velocities[nodeId].x = this.previousStates[nodeId].vx;
velocities[nodeId].y = this.previousStates[nodeId].vy;
nodes[nodeId].x = this.previousStates[nodeId].x;
nodes[nodeId].y = this.previousStates[nodeId].y;
}
}
else {
delete this.previousStates[nodeId];
}
}
}
/**
* This compares the reference state to the current state
*/
_evaluateStepQuality() {
let dx, dy, dpos;
let nodes = this.body.nodes;
let reference = this.referenceState;
let posThreshold = 0.3;
for (let nodeId in this.referenceState) {
if (this.referenceState.hasOwnProperty(nodeId) && nodes[nodeId] !== undefined) {
dx = nodes[nodeId].x - reference[nodeId].positions.x;
dy = nodes[nodeId].y - reference[nodeId].positions.y;
dpos = Math.sqrt(Math.pow(dx,2) + Math.pow(dy,2))
if (dpos > posThreshold) {
return false;
}
}
}
return true;
}
/**
* move the nodes one timestap and check if they are stabilized
* @returns {boolean}
*/
moveNodes() {
var nodeIndices = this.physicsBody.physicsNodeIndices;
var maxVelocity = this.options.maxVelocity ? this.options.maxVelocity : 1e9;
var maxNodeVelocity = 0;
var averageNodeVelocity = 0;
// the velocity threshold (energy in the system) for the adaptivity toggle
var velocityAdaptiveThreshold = 5;
for (let i = 0; i < nodeIndices.length; i++) {
let nodeId = nodeIndices[i];
let nodeVelocity = this._performStep(nodeId, maxVelocity);
// stabilized is true if stabilized is true and velocity is smaller than vmin --> all nodes must be stabilized
maxNodeVelocity = Math.max(maxNodeVelocity,nodeVelocity);
averageNodeVelocity += nodeVelocity;
}
// evaluating the stabilized and adaptiveTimestepEnabled conditions
this.adaptiveTimestepEnabled = (averageNodeVelocity/nodeIndices.length) < velocityAdaptiveThreshold;
this.stabilized = maxNodeVelocity < this.options.minVelocity;
}
// TODO consider moving _performStep in here
// right now Physics nodes don't have setX setY functions
// - maybe switch logic of setX and set x?
// - add functions to physics nodes - seems not desirable
/**
* calculate the forces for one physics iteration.
*/
calculateForces() {
this.gravitySolver.solve();
this.nodesSolver.solve();
this.edgesSolver.solve();
}
/**
* One batch of stabilization
* @private
*/
_stabilizationBatch() {
// this is here to ensure that there is at least one start event.
if (this.startedStabilization === false) {
this.emit('startStabilizing');
this.startedStabilization = true;
}
var count = 0;
while (this.stabilized === false && count < this.options.stabilization.updateInterval && this.stabilizationIterations < this.targetIterations) {
this.physicsTick();
count++;
}
if (this.stabilized === false && this.stabilizationIterations < this.targetIterations) {
this.emit('stabilizationProgress', {iterations: this.stabilizationIterations, total: this.targetIterations});
setTimeout(this._stabilizationBatch.bind(this),0);
}
else {
this._finalizeStabilization();
}
}
}
export default PhysicsBase;