vis.js is a dynamic, browser-based visualization library
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

794 lines
23 KiB

var BarnesHutSolver = require('./components/physics/BarnesHutSolver').default;
var Repulsion = require('./components/physics/RepulsionSolver').default;
var HierarchicalRepulsion = require('./components/physics/HierarchicalRepulsionSolver').default;
var SpringSolver = require('./components/physics/SpringSolver').default;
var HierarchicalSpringSolver = require('./components/physics/HierarchicalSpringSolver').default;
var CentralGravitySolver = require('./components/physics/CentralGravitySolver').default;
var ForceAtlas2BasedRepulsionSolver = require('./components/physics/FA2BasedRepulsionSolver').default;
var ForceAtlas2BasedCentralGravitySolver = require('./components/physics/FA2BasedCentralGravitySolver').default;
var util = require('../../util');
var EndPoints = require('./components/edges/util/EndPoints').default; // for debugging with _drawForces()
/**
* The physics engine
*/
class PhysicsEngine {
/**
* @param {Object} body
*/
constructor(body) {
this.body = body;
this.physicsBody = {physicsNodeIndices:[], physicsEdgeIndices:[], forces: {}, velocities: {}};
this.physicsEnabled = true;
this.simulationInterval = 1000 / 60;
this.requiresTimeout = true;
this.previousStates = {};
this.referenceState = {};
this.freezeCache = {};
this.renderTimer = undefined;
// parameters for the adaptive timestep
this.adaptiveTimestep = false;
this.adaptiveTimestepEnabled = false;
this.adaptiveCounter = 0;
this.adaptiveInterval = 3;
this.stabilized = false;
this.startedStabilization = false;
this.stabilizationIterations = 0;
this.ready = false; // will be set to true if the stabilize
// default options
this.options = {};
this.defaultOptions = {
enabled: true,
barnesHut: {
theta: 0.5,
gravitationalConstant: -2000,
centralGravity: 0.3,
springLength: 95,
springConstant: 0.04,
damping: 0.09,
avoidOverlap: 0
},
forceAtlas2Based: {
theta: 0.5,
gravitationalConstant: -50,
centralGravity: 0.01,
springConstant: 0.08,
springLength: 100,
damping: 0.4,
avoidOverlap: 0
},
repulsion: {
centralGravity: 0.2,
springLength: 200,
springConstant: 0.05,
nodeDistance: 100,
damping: 0.09,
avoidOverlap: 0
},
hierarchicalRepulsion: {
centralGravity: 0.0,
springLength: 100,
springConstant: 0.01,
nodeDistance: 120,
damping: 0.09
},
maxVelocity: 50,
minVelocity: 0.75, // px/s
solver: 'barnesHut',
stabilization: {
enabled: true,
iterations: 1000, // maximum number of iteration to stabilize
updateInterval: 50,
onlyDynamicEdges: false,
fit: true
},
timestep: 0.5,
adaptiveTimestep: true
};
util.extend(this.options, this.defaultOptions);
this.timestep = 0.5;
this.layoutFailed = false;
this.bindEventListeners();
}
/**
* Binds event listeners
*/
bindEventListeners() {
this.body.emitter.on('initPhysics', () => {this.initPhysics();});
this.body.emitter.on('_layoutFailed', () => {this.layoutFailed = true;});
this.body.emitter.on('resetPhysics', () => {this.stopSimulation(); this.ready = false;});
this.body.emitter.on('disablePhysics', () => {this.physicsEnabled = false; this.stopSimulation();});
this.body.emitter.on('restorePhysics', () => {
this.setOptions(this.options);
if (this.ready === true) {
this.startSimulation();
}
});
this.body.emitter.on('startSimulation', () => {
if (this.ready === true) {
this.startSimulation();
}
});
this.body.emitter.on('stopSimulation', () => {this.stopSimulation();});
this.body.emitter.on('destroy', () => {
this.stopSimulation(false);
this.body.emitter.off();
});
this.body.emitter.on("_dataChanged", () => {
// Nodes and/or edges have been added or removed, update shortcut lists.
this.updatePhysicsData();
});
// debug: show forces
// this.body.emitter.on("afterDrawing", (ctx) => {this._drawForces(ctx);});
}
/**
* set the physics options
* @param {Object} options
*/
setOptions(options) {
if (options !== undefined) {
if (options === false) {
this.options.enabled = false;
this.physicsEnabled = false;
this.stopSimulation();
}
else if (options === true) {
this.options.enabled = true;
this.physicsEnabled = true;
this.startSimulation();
}
else {
this.physicsEnabled = true;
util.selectiveNotDeepExtend(['stabilization'], this.options, options);
util.mergeOptions(this.options, options, 'stabilization');
if (options.enabled === undefined) {
this.options.enabled = true;
}
if (this.options.enabled === false) {
this.physicsEnabled = false;
this.stopSimulation();
}
// set the timestep
this.timestep = this.options.timestep;
}
}
this.init();
}
/**
* configure the engine.
*/
init() {
var options;
if (this.options.solver === 'forceAtlas2Based') {
options = this.options.forceAtlas2Based;
this.nodesSolver = new ForceAtlas2BasedRepulsionSolver(this.body, this.physicsBody, options);
this.edgesSolver = new SpringSolver(this.body, this.physicsBody, options);
this.gravitySolver = new ForceAtlas2BasedCentralGravitySolver(this.body, this.physicsBody, options);
}
else if (this.options.solver === 'repulsion') {
options = this.options.repulsion;
this.nodesSolver = new Repulsion(this.body, this.physicsBody, options);
this.edgesSolver = new SpringSolver(this.body, this.physicsBody, options);
this.gravitySolver = new CentralGravitySolver(this.body, this.physicsBody, options);
}
else if (this.options.solver === 'hierarchicalRepulsion') {
options = this.options.hierarchicalRepulsion;
this.nodesSolver = new HierarchicalRepulsion(this.body, this.physicsBody, options);
this.edgesSolver = new HierarchicalSpringSolver(this.body, this.physicsBody, options);
this.gravitySolver = new CentralGravitySolver(this.body, this.physicsBody, options);
}
else { // barnesHut
options = this.options.barnesHut;
this.nodesSolver = new BarnesHutSolver(this.body, this.physicsBody, options);
this.edgesSolver = new SpringSolver(this.body, this.physicsBody, options);
this.gravitySolver = new CentralGravitySolver(this.body, this.physicsBody, options);
}
this.modelOptions = options;
}
/**
* initialize the engine
*/
initPhysics() {
if (this.physicsEnabled === true && this.options.enabled === true) {
if (this.options.stabilization.enabled === true) {
this.stabilize();
}
else {
this.stabilized = false;
this.ready = true;
this.body.emitter.emit('fit', {}, this.layoutFailed); // if the layout failed, we use the approximation for the zoom
this.startSimulation();
}
}
else {
this.ready = true;
this.body.emitter.emit('fit');
}
}
/**
* Start the simulation
*/
startSimulation() {
if (this.physicsEnabled === true && this.options.enabled === true) {
this.stabilized = false;
// when visible, adaptivity is disabled.
this.adaptiveTimestep = false;
// this sets the width of all nodes initially which could be required for the avoidOverlap
this.body.emitter.emit("_resizeNodes");
if (this.viewFunction === undefined) {
this.viewFunction = this.simulationStep.bind(this);
this.body.emitter.on('initRedraw', this.viewFunction);
this.body.emitter.emit('_startRendering');
}
}
else {
this.body.emitter.emit('_redraw');
}
}
/**
* Stop the simulation, force stabilization.
* @param {boolean} [emit=true]
*/
stopSimulation(emit = true) {
this.stabilized = true;
if (emit === true) {
this._emitStabilized();
}
if (this.viewFunction !== undefined) {
this.body.emitter.off('initRedraw', this.viewFunction);
this.viewFunction = undefined;
if (emit === true) {
this.body.emitter.emit('_stopRendering');
}
}
}
/**
* The viewFunction inserts this step into each render loop. It calls the physics tick and handles the cleanup at stabilized.
*
*/
simulationStep() {
// check if the physics have settled
var startTime = Date.now();
this.physicsTick();
var physicsTime = Date.now() - startTime;
// run double speed if it is a little graph
if ((physicsTime < 0.4 * this.simulationInterval || this.runDoubleSpeed === true) && this.stabilized === false) {
this.physicsTick();
// this makes sure there is no jitter. The decision is taken once to run it at double speed.
this.runDoubleSpeed = true;
}
if (this.stabilized === true) {
this.stopSimulation();
}
}
/**
* trigger the stabilized event.
*
* @param {number} [amountOfIterations=this.stabilizationIterations]
* @private
*/
_emitStabilized(amountOfIterations = this.stabilizationIterations) {
if (this.stabilizationIterations > 1 || this.startedStabilization === true) {
setTimeout(() => {
this.body.emitter.emit('stabilized', {iterations: amountOfIterations});
this.startedStabilization = false;
this.stabilizationIterations = 0;
}, 0);
}
}
/**
* Calculate the forces for one physics iteration and move the nodes.
* @private
*/
physicsStep() {
this.gravitySolver.solve();
this.nodesSolver.solve();
this.edgesSolver.solve();
this.moveNodes();
}
/**
* Make dynamic adjustments to the timestep, based on current state.
*
* Helper function for physicsTick().
* @private
*/
adjustTimeStep() {
const factor = 1.2; // Factor for increasing the timestep on success.
// we compare the two steps. if it is acceptable we double the step.
if (this._evaluateStepQuality() === true) {
this.timestep = factor * this.timestep;
}
else {
// if not, we decrease the step to a minimum of the options timestep.
// if the decreased timestep is smaller than the options step, we do not reset the counter
// we assume that the options timestep is stable enough.
if (this.timestep/factor < this.options.timestep) {
this.timestep = this.options.timestep;
}
else {
// if the timestep was larger than 2 times the option one we check the adaptivity again to ensure
// that large instabilities do not form.
this.adaptiveCounter = -1; // check again next iteration
this.timestep = Math.max(this.options.timestep, this.timestep/factor);
}
}
}
/**
* A single simulation step (or 'tick') in the physics simulation
*
* @private
*/
physicsTick() {
this._startStabilizing(); // this ensures that there is no start event when the network is already stable.
if (this.stabilized === true) return;
// adaptivity means the timestep adapts to the situation, only applicable for stabilization
if (this.adaptiveTimestep === true && this.adaptiveTimestepEnabled === true) {
// timestep remains stable for "interval" iterations.
let doAdaptive = (this.adaptiveCounter % this.adaptiveInterval === 0);
if (doAdaptive) {
// first the big step and revert.
this.timestep = 2 * this.timestep;
this.physicsStep();
this.revert(); // saves the reference state
// now the normal step. Since this is the last step, it is the more stable one and we will take this.
this.timestep = 0.5 * this.timestep;
// since it's half the step, we do it twice.
this.physicsStep();
this.physicsStep();
this.adjustTimeStep();
}
else {
this.physicsStep(); // normal step, keeping timestep constant
}
this.adaptiveCounter += 1;
}
else {
// case for the static timestep, we reset it to the one in options and take a normal step.
this.timestep = this.options.timestep;
this.physicsStep();
}
if (this.stabilized === true) this.revert();
this.stabilizationIterations++;
}
/**
* Nodes and edges can have the physics toggles on or off. A collection of indices is created here so we can skip the check all the time.
*
* @private
*/
updatePhysicsData() {
this.physicsBody.forces = {};
this.physicsBody.physicsNodeIndices = [];
this.physicsBody.physicsEdgeIndices = [];
let nodes = this.body.nodes;
let edges = this.body.edges;
// get node indices for physics
for (let nodeId in nodes) {
if (nodes.hasOwnProperty(nodeId)) {
if (nodes[nodeId].options.physics === true) {
this.physicsBody.physicsNodeIndices.push(nodes[nodeId].id);
}
}
}
// get edge indices for physics
for (let edgeId in edges) {
if (edges.hasOwnProperty(edgeId)) {
if (edges[edgeId].options.physics === true) {
this.physicsBody.physicsEdgeIndices.push(edges[edgeId].id);
}
}
}
// get the velocity and the forces vector
for (let i = 0; i < this.physicsBody.physicsNodeIndices.length; i++) {
let nodeId = this.physicsBody.physicsNodeIndices[i];
this.physicsBody.forces[nodeId] = {x:0,y:0};
// forces can be reset because they are recalculated. Velocities have to persist.
if (this.physicsBody.velocities[nodeId] === undefined) {
this.physicsBody.velocities[nodeId] = {x:0,y:0};
}
}
// clean deleted nodes from the velocity vector
for (let nodeId in this.physicsBody.velocities) {
if (nodes[nodeId] === undefined) {
delete this.physicsBody.velocities[nodeId];
}
}
}
/**
* Revert the simulation one step. This is done so after stabilization, every new start of the simulation will also say stabilized.
*/
revert() {
var nodeIds = Object.keys(this.previousStates);
var nodes = this.body.nodes;
var velocities = this.physicsBody.velocities;
this.referenceState = {};
for (let i = 0; i < nodeIds.length; i++) {
let nodeId = nodeIds[i];
if (nodes[nodeId] !== undefined) {
if (nodes[nodeId].options.physics === true) {
this.referenceState[nodeId] = {
positions: {x:nodes[nodeId].x, y:nodes[nodeId].y}
};
velocities[nodeId].x = this.previousStates[nodeId].vx;
velocities[nodeId].y = this.previousStates[nodeId].vy;
nodes[nodeId].x = this.previousStates[nodeId].x;
nodes[nodeId].y = this.previousStates[nodeId].y;
}
}
else {
delete this.previousStates[nodeId];
}
}
}
/**
* This compares the reference state to the current state
*
* @returns {boolean}
* @private
*/
_evaluateStepQuality() {
let dx, dy, dpos;
let nodes = this.body.nodes;
let reference = this.referenceState;
let posThreshold = 0.3;
for (let nodeId in this.referenceState) {
if (this.referenceState.hasOwnProperty(nodeId) && nodes[nodeId] !== undefined) {
dx = nodes[nodeId].x - reference[nodeId].positions.x;
dy = nodes[nodeId].y - reference[nodeId].positions.y;
dpos = Math.sqrt(Math.pow(dx,2) + Math.pow(dy,2))
if (dpos > posThreshold) {
return false;
}
}
}
return true;
}
/**
* move the nodes one timestep and check if they are stabilized
*/
moveNodes() {
var nodeIndices = this.physicsBody.physicsNodeIndices;
var maxNodeVelocity = 0;
var averageNodeVelocity = 0;
// the velocity threshold (energy in the system) for the adaptivity toggle
var velocityAdaptiveThreshold = 5;
for (let i = 0; i < nodeIndices.length; i++) {
let nodeId = nodeIndices[i];
let nodeVelocity = this._performStep(nodeId);
// stabilized is true if stabilized is true and velocity is smaller than vmin --> all nodes must be stabilized
maxNodeVelocity = Math.max(maxNodeVelocity, nodeVelocity);
averageNodeVelocity += nodeVelocity;
}
// evaluating the stabilized and adaptiveTimestepEnabled conditions
this.adaptiveTimestepEnabled = (averageNodeVelocity/nodeIndices.length) < velocityAdaptiveThreshold;
this.stabilized = maxNodeVelocity < this.options.minVelocity;
}
/**
* Calculate new velocity for a coordinate direction
*
* @param {number} v velocity for current coordinate
* @param {number} f regular force for current coordinate
* @param {number} m mass of current node
* @returns {number} new velocity for current coordinate
* @private
*/
calculateComponentVelocity(v,f, m) {
let df = this.modelOptions.damping * v; // damping force
let a = (f - df) / m; // acceleration
v += a * this.timestep;
// Put a limit on the velocities if it is really high
let maxV = this.options.maxVelocity || 1e9;
if (Math.abs(v) > maxV) {
v = ((v > 0) ? maxV: -maxV);
}
return v;
}
/**
* Perform the actual step
*
* @param {Node.id} nodeId
* @returns {number} the new velocity of given node
* @private
*/
_performStep(nodeId) {
let node = this.body.nodes[nodeId];
let force = this.physicsBody.forces[nodeId];
let velocity = this.physicsBody.velocities[nodeId];
// store the state so we can revert
this.previousStates[nodeId] = {x:node.x, y:node.y, vx:velocity.x, vy:velocity.y};
if (node.options.fixed.x === false) {
velocity.x = this.calculateComponentVelocity(velocity.x, force.x, node.options.mass);
node.x += velocity.x * this.timestep;
}
else {
force.x = 0;
velocity.x = 0;
}
if (node.options.fixed.y === false) {
velocity.y = this.calculateComponentVelocity(velocity.y, force.y, node.options.mass);
node.y += velocity.y * this.timestep;
}
else {
force.y = 0;
velocity.y = 0;
}
let totalVelocity = Math.sqrt(Math.pow(velocity.x,2) + Math.pow(velocity.y,2));
return totalVelocity;
}
/**
* When initializing and stabilizing, we can freeze nodes with a predefined position.
* This greatly speeds up stabilization because only the supportnodes for the smoothCurves have to settle.
*
* @private
*/
_freezeNodes() {
var nodes = this.body.nodes;
for (var id in nodes) {
if (nodes.hasOwnProperty(id)) {
if (nodes[id].x && nodes[id].y) {
let fixed = nodes[id].options.fixed;
this.freezeCache[id] = {x:fixed.x, y:fixed.y};
fixed.x = true;
fixed.y = true;
}
}
}
}
/**
* Unfreezes the nodes that have been frozen by _freezeDefinedNodes.
*
* @private
*/
_restoreFrozenNodes() {
var nodes = this.body.nodes;
for (var id in nodes) {
if (nodes.hasOwnProperty(id)) {
if (this.freezeCache[id] !== undefined) {
nodes[id].options.fixed.x = this.freezeCache[id].x;
nodes[id].options.fixed.y = this.freezeCache[id].y;
}
}
}
this.freezeCache = {};
}
/**
* Find a stable position for all nodes
*
* @param {number} [iterations=this.options.stabilization.iterations]
*/
stabilize(iterations = this.options.stabilization.iterations) {
if (typeof iterations !== 'number') {
iterations = this.options.stabilization.iterations;
console.log('The stabilize method needs a numeric amount of iterations. Switching to default: ', iterations);
}
if (this.physicsBody.physicsNodeIndices.length === 0) {
this.ready = true;
return;
}
// enable adaptive timesteps
this.adaptiveTimestep = true && this.options.adaptiveTimestep;
// this sets the width of all nodes initially which could be required for the avoidOverlap
this.body.emitter.emit("_resizeNodes");
this.stopSimulation(); // stop the render loop
this.stabilized = false;
// block redraw requests
this.body.emitter.emit('_blockRedraw');
this.targetIterations = iterations;
// start the stabilization
if (this.options.stabilization.onlyDynamicEdges === true) {
this._freezeNodes();
}
this.stabilizationIterations = 0;
setTimeout(() => this._stabilizationBatch(),0);
}
/**
* If not already stabilizing, start it and emit a start event.
*
* @returns {boolean} true if stabilization started with this call
* @private
*/
_startStabilizing() {
if (this.startedStabilization === true) return false;
this.body.emitter.emit('startStabilizing');
this.startedStabilization = true;
return true;
}
/**
* One batch of stabilization
* @private
*/
_stabilizationBatch() {
var running = () => (this.stabilized === false && this.stabilizationIterations < this.targetIterations);
var sendProgress = () => {
this.body.emitter.emit('stabilizationProgress', {
iterations: this.stabilizationIterations,
total: this.targetIterations
});
};
if (this._startStabilizing()) {
sendProgress(); // Ensure that there is at least one start event.
}
var count = 0;
while (running() && count < this.options.stabilization.updateInterval) {
this.physicsTick();
count++;
}
sendProgress();
if (running()) {
setTimeout(this._stabilizationBatch.bind(this),0);
}
else {
this._finalizeStabilization();
}
}
/**
* Wrap up the stabilization, fit and emit the events.
* @private
*/
_finalizeStabilization() {
this.body.emitter.emit('_allowRedraw');
if (this.options.stabilization.fit === true) {
this.body.emitter.emit('fit');
}
if (this.options.stabilization.onlyDynamicEdges === true) {
this._restoreFrozenNodes();
}
this.body.emitter.emit('stabilizationIterationsDone');
this.body.emitter.emit('_requestRedraw');
if (this.stabilized === true) {
this._emitStabilized();
}
else {
this.startSimulation();
}
this.ready = true;
}
//--------------------------- DEBUGGING BELOW ---------------------------//
/**
* Debug function that display arrows for the forces currently active in the network.
*
* Use this when debugging only.
*
* @param {CanvasRenderingContext2D} ctx
* @private
*/
_drawForces(ctx) {
for (var i = 0; i < this.physicsBody.physicsNodeIndices.length; i++) {
let index = this.physicsBody.physicsNodeIndices[i];
let node = this.body.nodes[index];
let force = this.physicsBody.forces[index];
let factor = 20;
let colorFactor = 0.03;
let forceSize = Math.sqrt(Math.pow(force.x,2) + Math.pow(force.x,2));
let size = Math.min(Math.max(5,forceSize),15);
let arrowSize = 3*size;
let color = util.HSVToHex((180 - Math.min(1,Math.max(0,colorFactor*forceSize))*180) / 360,1,1);
let point = {
x: node.x + factor*force.x,
y: node.y + factor*force.y
};
ctx.lineWidth = size;
ctx.strokeStyle = color;
ctx.beginPath();
ctx.moveTo(node.x,node.y);
ctx.lineTo(point.x, point.y);
ctx.stroke();
let angle = Math.atan2(force.y, force.x);
ctx.fillStyle = color;
EndPoints.draw(ctx, {type: 'arrow', point: point, angle: angle, length: arrowSize});
ctx.fill();
}
}
}
export default PhysicsEngine;