vis.js is a dynamic, browser-based visualization library
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

428 lines
13 KiB

/**
* Created by Alex on 2/23/2015.
*/
import {BarnesHutSolver} from "./components/physics/BarnesHutSolver";
import {Repulsion} from "./components/physics/RepulsionSolver";
import {HierarchicalRepulsion} from "./components/physics/HierarchicalRepulsionSolver";
import {SpringSolver} from "./components/physics/SpringSolver";
import {HierarchicalSpringSolver} from "./components/physics/HierarchicalSpringSolver";
import {CentralGravitySolver} from "./components/physics/CentralGravitySolver";
var util = require('../../util');
class PhysicsEngine {
constructor(body) {
this.body = body;
this.physicsBody = {calculationNodes: {}, calculationNodeIndices:[], forces: {}, velocities: {}};
this.simulationInterval = 1000 / 60;
this.requiresTimeout = true;
this.previousStates = {};
this.renderTimer == undefined;
this.stabilized = false;
this.stabilizationIterations = 0;
// default options
this.options = {};
this.defaultOptions = {
barnesHut: {
thetaInverted: 1 / 0.5, // inverted to save time during calculation
gravitationalConstant: -2000,
centralGravity: 0.3,
springLength: 95,
springConstant: 0.04,
damping: 0.09
},
repulsion: {
centralGravity: 0.0,
springLength: 200,
springConstant: 0.05,
nodeDistance: 100,
damping: 0.09
},
hierarchicalRepulsion: {
centralGravity: 0.0,
springLength: 100,
springConstant: 0.01,
nodeDistance: 150,
damping: 0.09
},
model: 'BarnesHut',
timestep: 0.5,
maxVelocity: 50,
minVelocity: 0.1, // px/s
stabilization: {
enabled: true,
iterations: 1000, // maximum number of iteration to stabilize
updateInterval: 100,
onlyDynamicEdges: false,
zoomExtent: true
}
}
util.extend(this.options, this.defaultOptions);
this.body.emitter.on("stabilize", () => {this.startSimulation();});
this.body.emitter.on("startSimulation", () => {this.stabilized = false; this.runSimulation();});
this.body.emitter.on("stopSimulation", () => {this.stopSimulation();});
}
setOptions(options) {
if (options !== undefined) {
if (typeof options.stabilization == 'boolean') {
options.stabilization = {
enabled: options.stabilization
}
}
util.deepExtend(this.options, options);
}
this.init();
}
init() {
var options;
if (this.options.model == "repulsion") {
options = this.options.repulsion;
this.nodesSolver = new Repulsion(this.body, this.physicsBody, options);
this.edgesSolver = new SpringSolver(this.body, this.physicsBody, options);
}
else if (this.options.model == "hierarchicalRepulsion") {
options = this.options.hierarchicalRepulsion;
this.nodesSolver = new HierarchicalRepulsion(this.body, this.physicsBody, options);
this.edgesSolver = new HierarchicalSpringSolver(this.body, this.physicsBody, options);
}
else { // barnesHut
options = this.options.barnesHut;
this.nodesSolver = new BarnesHutSolver(this.body, this.physicsBody, options);
this.edgesSolver = new SpringSolver(this.body, this.physicsBody, options);
}
this.gravitySolver = new CentralGravitySolver(this.body, this.physicsBody, options);
this.modelOptions = options;
}
startSimulation() {
this.stabilized = false;
if (this.options.stabilization.enabled === true) {
this.stabilize();
}
else {
this.runSimulation();
}
}
stopSimulation() {
this.stabilized = true;
if (this.viewFunction !== undefined) {
this.body.emitter.off("_beforeRender", this.viewFunction);
this.viewFunction = undefined;
this.body.emitter.emit("_stopRendering");
}
}
runSimulation() {
if (this.viewFunction === undefined) {
this.viewFunction = this.simulationStep.bind(this);
this.body.emitter.on("_beforeRender", this.viewFunction);
this.body.emitter.emit("_startRendering");
}
}
simulationStep() {
// check if the physics have settled
var startTime = Date.now();
this.physicsTick();
var physicsTime = Date.now() - startTime;
// run double speed if it is a little graph
if ((physicsTime < 0.4 * this.simulationInterval || this.runDoubleSpeed == true) && this.stabilized === false) {
this.physicsTick();
// this makes sure there is no jitter. The decision is taken once to run it at double speed.
this.runDoubleSpeed = true;
}
if (this.stabilized === true) {
if (this.stabilizationIterations > 1) {
// trigger the "stabilized" event.
// The event is triggered on the next tick, to prevent the case that
// it is fired while initializing the Network, in which case you would not
// be able to catch it
var me = this;
var params = {
iterations: this.stabilizationIterations
};
this.stabilizationIterations = 0;
this.startedStabilization = false;
setTimeout(function () {
me.body.emitter.emit("stabilized", params);
}, 0);
}
else {
this.stabilizationIterations = 0;
}
this.stopSimulation();
}
}
/**
* A single simulation step (or "tick") in the physics simulation
*
* @private
*/
physicsTick() {
if (this.stabilized === false) {
this.calculateForces();
this.stabilized = this.moveNodes();
// determine if the network has stabilzied
if (this.stabilized === true) {
this.revert();
}
else {
// this is here to ensure that there is no start event when the network is already stable.
if (this.startedStabilization == false) {
this.body.emitter.emit("startStabilizing");
this.startedStabilization = true;
}
}
this.stabilizationIterations++;
}
}
/**
* Smooth curves are created by adding invisible nodes in the center of the edges. These nodes are also
* handled in the calculateForces function. We then use a quadratic curve with the center node as control.
* This function joins the datanodes and invisible (called support) nodes into one object.
* We do this so we do not contaminate this.body.nodes with the support nodes.
*
* @private
*/
_updateCalculationNodes() {
this.physicsBody.calculationNodes = {};
this.physicsBody.forces = {};
this.physicsBody.calculationNodeIndices = [];
for (let i = 0; i < this.body.nodeIndices.length; i++) {
let nodeId = this.body.nodeIndices[i];
this.physicsBody.calculationNodes[nodeId] = this.body.nodes[nodeId];
}
// if support nodes are used, we have them here
var supportNodes = this.body.supportNodes;
for (let i = 0; i < this.body.supportNodeIndices.length; i++) {
let supportNodeId = this.body.supportNodeIndices[i];
if (this.body.edges[supportNodes[supportNodeId].parentEdgeId] !== undefined) {
this.physicsBody.calculationNodes[supportNodeId] = supportNodes[supportNodeId];
}
else {
console.error("Support node detected that does not have an edge!")
}
}
this.physicsBody.calculationNodeIndices = Object.keys(this.physicsBody.calculationNodes);
for (let i = 0; i < this.physicsBody.calculationNodeIndices.length; i++) {
let nodeId = this.physicsBody.calculationNodeIndices[i];
this.physicsBody.forces[nodeId] = {x:0,y:0};
// forces can be reset because they are recalculated. Velocities have to persist.
if (this.physicsBody.velocities[nodeId] === undefined) {
this.physicsBody.velocities[nodeId] = {x:0,y:0};
}
}
// clean deleted nodes from the velocity vector
for (let nodeId in this.physicsBody.velocities) {
if (this.physicsBody.calculationNodes[nodeId] === undefined) {
delete this.physicsBody.velocities[nodeId];
}
}
}
revert() {
var nodeIds = Object.keys(this.previousStates);
var nodes = this.physicsBody.calculationNodes;
var velocities = this.physicsBody.velocities;
for (let i = 0; i < nodeIds.length; i++) {
let nodeId = nodeIds[i];
if (nodes[nodeId] !== undefined) {
velocities[nodeId].x = this.previousStates[nodeId].vx;
velocities[nodeId].y = this.previousStates[nodeId].vy;
nodes[nodeId].x = this.previousStates[nodeId].x;
nodes[nodeId].y = this.previousStates[nodeId].y;
}
else {
delete this.previousStates[nodeId];
}
}
}
moveNodes() {
var nodesPresent = false;
var nodeIndices = this.physicsBody.calculationNodeIndices;
var maxVelocity = this.options.maxVelocity === 0 ? 1e9 : this.options.maxVelocity;
var stabilized = true;
var vminCorrected = this.options.minVelocity / Math.max(this.body.view.scale,0.05);
for (let i = 0; i < nodeIndices.length; i++) {
let nodeId = nodeIndices[i];
let nodeVelocity = this._performStep(nodeId, maxVelocity);
// stabilized is true if stabilized is true and velocity is smaller than vmin --> all nodes must be stabilized
stabilized = nodeVelocity < vminCorrected && stabilized === true;
nodesPresent = true;
}
if (nodesPresent == true) {
if (vminCorrected > 0.5*this.options.maxVelocity) {
return false;
}
else {
return stabilized;
}
}
return true;
}
_performStep(nodeId,maxVelocity) {
var node = this.physicsBody.calculationNodes[nodeId];
var timestep = this.options.timestep;
var forces = this.physicsBody.forces;
var velocities = this.physicsBody.velocities;
// store the state so we can revert
this.previousStates[nodeId] = {x:node.x, y:node.y, vx:velocities[nodeId].x, vy:velocities[nodeId].y};
if (!node.xFixed) {
let dx = this.modelOptions.damping * velocities[nodeId].x; // damping force
let ax = (forces[nodeId].x - dx) / node.options.mass; // acceleration
velocities[nodeId].x += ax * timestep; // velocity
velocities[nodeId].x = (Math.abs(velocities[nodeId].x) > maxVelocity) ? ((velocities[nodeId].x > 0) ? maxVelocity : -maxVelocity) : velocities[nodeId].x;
node.x += velocities[nodeId].x * timestep; // position
}
else {
forces[nodeId].x = 0;
velocities[nodeId].x = 0;
}
if (!node.yFixed) {
let dy = this.modelOptions.damping * velocities[nodeId].y; // damping force
let ay = (forces[nodeId].y - dy) / node.options.mass; // acceleration
velocities[nodeId].y += ay * timestep; // velocity
velocities[nodeId].y = (Math.abs(velocities[nodeId].y) > maxVelocity) ? ((velocities[nodeId].y > 0) ? maxVelocity : -maxVelocity) : velocities[nodeId].y;
node.y += velocities[nodeId].y * timestep; // position
}
else {
forces[nodeId].y = 0;
velocities[nodeId].y = 0;
}
var totalVelocity = Math.sqrt(Math.pow(velocities[nodeId].x,2) + Math.pow(velocities[nodeId].y,2));
return totalVelocity;
}
calculateForces() {
this.gravitySolver.solve();
this.nodesSolver.solve();
this.edgesSolver.solve();
}
/**
* When initializing and stabilizing, we can freeze nodes with a predefined position. This greatly speeds up stabilization
* because only the supportnodes for the smoothCurves have to settle.
*
* @private
*/
_freezeNodes() {
var nodes = this.body.nodes;
for (var id in nodes) {
if (nodes.hasOwnProperty(id)) {
if (nodes[id].x != null && nodes[id].y != null) {
nodes[id].fixedData.x = nodes[id].xFixed;
nodes[id].fixedData.y = nodes[id].yFixed;
nodes[id].xFixed = true;
nodes[id].yFixed = true;
}
}
}
}
/**
* Unfreezes the nodes that have been frozen by _freezeDefinedNodes.
*
* @private
*/
_restoreFrozenNodes() {
var nodes = this.body.nodes;
for (var id in nodes) {
if (nodes.hasOwnProperty(id)) {
if (nodes[id].fixedData.x != null) {
nodes[id].xFixed = nodes[id].fixedData.x;
nodes[id].yFixed = nodes[id].fixedData.y;
}
}
}
}
/**
* Find a stable position for all nodes
* @private
*/
stabilize() {
if (this.options.stabilization.onlyDynamicEdges == true) {
this._freezeNodes();
}
this.stabilizationSteps = 0;
setTimeout(this._stabilizationBatch.bind(this),0);
}
_stabilizationBatch() {
var count = 0;
while (this.stabilized == false && count < this.options.stabilization.updateInterval && this.stabilizationSteps < this.options.stabilization.iterations) {
this.physicsTick();
this.stabilizationSteps++;
count++;
}
if (this.stabilized == false && this.stabilizationSteps < this.options.stabilization.iterations) {
this.body.emitter.emit("stabilizationProgress", {steps: this.stabilizationSteps, total: this.options.stabilization.iterations});
setTimeout(this._stabilizationBatch.bind(this),0);
}
else {
this._finalizeStabilization();
}
}
_finalizeStabilization() {
if (this.options.stabilization.zoomExtent == true) {
this.body.emitter.emit("zoomExtent", {duration:0});
}
if (this.options.stabilization.onlyDynamicEdges == true) {
this._restoreFrozenNodes();
}
this.body.emitter.emit("stabilizationIterationsDone");
this.body.emitter.emit("_requestRedraw");
}
}
export {PhysicsEngine};