|
|
- /**
- * Created by Alex on 10-Aug-15.
- */
-
-
- class FloydWarshall {
- constructor(){}
-
- getDistances(body, nodesArray, edgesArray) {
- let D_matrix = {};
- let edges = body.edges;
-
- // prepare matrix with large numbers
- for (let i = 0; i < nodesArray.length; i++) {
- D_matrix[nodesArray[i]] = {};
- D_matrix[nodesArray[i]] = {};
- for (let j = 0; j < nodesArray.length; j++) {
- D_matrix[nodesArray[i]][nodesArray[j]] = (i == j ? 0 : 1e9);
- D_matrix[nodesArray[i]][nodesArray[j]] = (i == j ? 0 : 1e9);
- }
- }
-
- // put the weights for the edges in. This assumes unidirectionality.
- for (let i = 0; i < edgesArray.length; i++) {
- let edge = edges[edgesArray[i]];
- // edge has to be connected if it counts to the distances. If it is connected to inner clusters it will crash so we also check if it is in the D_matrix
- if (edge.connected === true && D_matrix[edge.fromId] !== undefined && D_matrix[edge.toId] !== undefined) {
- D_matrix[edge.fromId][edge.toId] = 1;
- D_matrix[edge.toId][edge.fromId] = 1;
- }
- }
-
- let nodeCount = nodesArray.length;
-
- // Adapted FloydWarshall based on unidirectionality to greatly reduce complexity.
- for (let k = 0; k < nodeCount; k++) {
- for (let i = 0; i < nodeCount-1; i++) {
- for (let j = i+1; j < nodeCount; j++) {
- D_matrix[nodesArray[i]][nodesArray[j]] = Math.min(D_matrix[nodesArray[i]][nodesArray[j]],D_matrix[nodesArray[i]][nodesArray[k]] + D_matrix[nodesArray[k]][nodesArray[j]])
- D_matrix[nodesArray[j]][nodesArray[i]] = D_matrix[nodesArray[i]][nodesArray[j]];
- }
- }
- }
-
- return D_matrix;
- }
- }
-
- export default FloydWarshall;
|