|
|
- // distance finding algorithm
- import FloydWarshall from "./components/algorithms/FloydWarshall.js"
-
-
- /**
- * KamadaKawai positions the nodes initially based on
- *
- * "AN ALGORITHM FOR DRAWING GENERAL UNDIRECTED GRAPHS"
- * -- Tomihisa KAMADA and Satoru KAWAI in 1989
- *
- * Possible optimizations in the distance calculation can be implemented.
- */
- class KamadaKawai {
- constructor(body, edgeLength, edgeStrength) {
- this.body = body;
- this.springLength = edgeLength;
- this.springConstant = edgeStrength;
- this.distanceSolver = new FloydWarshall();
- }
-
- /**
- * Not sure if needed but can be used to update the spring length and spring constant
- * @param options
- */
- setOptions(options) {
- if (options) {
- if (options.springLength) {
- this.springLength = options.springLength;
- }
- if (options.springConstant) {
- this.springConstant = options.springConstant;
- }
- }
- }
-
-
- /**
- * Position the system
- * @param nodesArray
- * @param edgesArray
- */
- solve(nodesArray, edgesArray, ignoreClusters = false) {
- // get distance matrix
- let D_matrix = this.distanceSolver.getDistances(this.body, nodesArray, edgesArray); // distance matrix
-
- // get the L Matrix
- this._createL_matrix(D_matrix);
-
- // get the K Matrix
- this._createK_matrix(D_matrix);
-
- // initial E Matrix
- this._createE_matrix();
-
- // calculate positions
- let threshold = 0.01;
- let innerThreshold = 1;
- let iterations = 0;
- let maxIterations = Math.max(1000, Math.min(10 * this.body.nodeIndices.length, 6000));
- let maxInnerIterations = 5;
-
- let maxEnergy = 1e9;
- let highE_nodeId = 0, dE_dx = 0, dE_dy = 0, delta_m = 0, subIterations = 0;
-
- while (maxEnergy > threshold && iterations < maxIterations) {
- iterations += 1;
- [highE_nodeId, maxEnergy, dE_dx, dE_dy] = this._getHighestEnergyNode(ignoreClusters);
- delta_m = maxEnergy;
- subIterations = 0;
- while (delta_m > innerThreshold && subIterations < maxInnerIterations) {
- subIterations += 1;
- this._moveNode(highE_nodeId, dE_dx, dE_dy);
- [delta_m, dE_dx, dE_dy] = this._getEnergy(highE_nodeId);
- }
- }
- }
-
- /**
- * get the node with the highest energy
- * @returns {*[]}
- * @private
- */
- _getHighestEnergyNode(ignoreClusters) {
- let nodesArray = this.body.nodeIndices;
- let nodes = this.body.nodes;
- let maxEnergy = 0;
- let maxEnergyNodeId = nodesArray[0];
- let dE_dx_max = 0, dE_dy_max = 0;
-
- for (let nodeIdx = 0; nodeIdx < nodesArray.length; nodeIdx++) {
- let m = nodesArray[nodeIdx];
- // by not evaluating nodes with predefined positions we should only move nodes that have no positions.
- if ((nodes[m].predefinedPosition === false || nodes[m].isCluster === true && ignoreClusters === true) || nodes[m].options.fixed.x === true || nodes[m].options.fixed.y === true) {
- let [delta_m,dE_dx,dE_dy] = this._getEnergy(m);
- if (maxEnergy < delta_m) {
- maxEnergy = delta_m;
- maxEnergyNodeId = m;
- dE_dx_max = dE_dx;
- dE_dy_max = dE_dy;
- }
- }
- }
-
- return [maxEnergyNodeId, maxEnergy, dE_dx_max, dE_dy_max];
- }
-
- /**
- * calculate the energy of a single node
- * @param m
- * @returns {*[]}
- * @private
- */
- _getEnergy(m) {
- let [dE_dx,dE_dy] = this.E_sums[m];
- let delta_m = Math.sqrt(Math.pow(dE_dx, 2) + Math.pow(dE_dy, 2));
- return [delta_m, dE_dx, dE_dy];
- }
-
- /**
- * move the node based on it's energy
- * the dx and dy are calculated from the linear system proposed by Kamada and Kawai
- * @param m
- * @param dE_dx
- * @param dE_dy
- * @private
- */
- _moveNode(m, dE_dx, dE_dy) {
- let nodesArray = this.body.nodeIndices;
- let nodes = this.body.nodes;
- let d2E_dx2 = 0;
- let d2E_dxdy = 0;
- let d2E_dy2 = 0;
-
- let x_m = nodes[m].x;
- let y_m = nodes[m].y;
- let km = this.K_matrix[m];
- let lm = this.L_matrix[m];
-
- for (let iIdx = 0; iIdx < nodesArray.length; iIdx++) {
- let i = nodesArray[iIdx];
- if (i !== m) {
- let x_i = nodes[i].x;
- let y_i = nodes[i].y;
- let kmat = km[i];
- let lmat = lm[i];
- let denominator = 1.0 / Math.pow(Math.pow(x_m - x_i, 2) + Math.pow(y_m - y_i, 2), 1.5);
- d2E_dx2 += kmat * (1 - lmat * Math.pow(y_m - y_i, 2) * denominator);
- d2E_dxdy += kmat * (lmat * (x_m - x_i) * (y_m - y_i) * denominator);
- d2E_dy2 += kmat * (1 - lmat * Math.pow(x_m - x_i, 2) * denominator);
- }
- }
- // make the variable names easier to make the solving of the linear system easier to read
- let A = d2E_dx2, B = d2E_dxdy, C = dE_dx, D = d2E_dy2, E = dE_dy;
-
- // solve the linear system for dx and dy
- let dy = (C / A + E / B) / (B / A - D / B);
- let dx = -(B * dy + C) / A;
-
- // move the node
- nodes[m].x += dx;
- nodes[m].y += dy;
-
- // Recalculate E_matrix (should be incremental)
- this._updateE_matrix(m);
- }
-
-
- /**
- * Create the L matrix: edge length times shortest path
- * @param D_matrix
- * @private
- */
- _createL_matrix(D_matrix) {
- let nodesArray = this.body.nodeIndices;
- let edgeLength = this.springLength;
-
- this.L_matrix = [];
- for (let i = 0; i < nodesArray.length; i++) {
- this.L_matrix[nodesArray[i]] = {};
- for (let j = 0; j < nodesArray.length; j++) {
- this.L_matrix[nodesArray[i]][nodesArray[j]] = edgeLength * D_matrix[nodesArray[i]][nodesArray[j]];
- }
- }
- }
-
-
- /**
- * Create the K matrix: spring constants times shortest path
- * @param D_matrix
- * @private
- */
- _createK_matrix(D_matrix) {
- let nodesArray = this.body.nodeIndices;
- let edgeStrength = this.springConstant;
-
- this.K_matrix = [];
- for (let i = 0; i < nodesArray.length; i++) {
- this.K_matrix[nodesArray[i]] = {};
- for (let j = 0; j < nodesArray.length; j++) {
- this.K_matrix[nodesArray[i]][nodesArray[j]] = edgeStrength * Math.pow(D_matrix[nodesArray[i]][nodesArray[j]], -2);
- }
- }
- }
-
- /**
- * Create matrix with all energies between nodes
- * @private
- */
- _createE_matrix() {
- let nodesArray = this.body.nodeIndices;
- let nodes = this.body.nodes;
- this.E_matrix = {};
- this.E_sums = {};
- for (let mIdx = 0; mIdx < nodesArray.length; mIdx++) {
- this.E_matrix[nodesArray[mIdx]] = [];
- }
- for (let mIdx = 0; mIdx < nodesArray.length; mIdx++) {
- let m = nodesArray[mIdx];
- let x_m = nodes[m].x;
- let y_m = nodes[m].y;
- let dE_dx = 0;
- let dE_dy = 0;
- for (let iIdx = mIdx; iIdx < nodesArray.length; iIdx++) {
- let i = nodesArray[iIdx];
- if (i !== m) {
- let x_i = nodes[i].x;
- let y_i = nodes[i].y;
- let denominator = 1.0 / Math.sqrt(Math.pow(x_m - x_i, 2) + Math.pow(y_m - y_i, 2));
- this.E_matrix[m][iIdx] = [
- this.K_matrix[m][i] * ((x_m - x_i) - this.L_matrix[m][i] * (x_m - x_i) * denominator),
- this.K_matrix[m][i] * ((y_m - y_i) - this.L_matrix[m][i] * (y_m - y_i) * denominator)
- ];
- this.E_matrix[i][mIdx] = this.E_matrix[m][iIdx];
- dE_dx += this.E_matrix[m][iIdx][0];
- dE_dy += this.E_matrix[m][iIdx][1];
- }
- }
- //Store sum
- this.E_sums[m] = [dE_dx, dE_dy];
- }
- }
-
- //Update method, just doing single column (rows are auto-updated) (update all sums)
- _updateE_matrix(m) {
- let nodesArray = this.body.nodeIndices;
- let nodes = this.body.nodes;
- let colm = this.E_matrix[m];
- let kcolm = this.K_matrix[m];
- let lcolm = this.L_matrix[m];
- let x_m = nodes[m].x;
- let y_m = nodes[m].y;
- let dE_dx = 0;
- let dE_dy = 0;
- for (let iIdx = 0; iIdx < nodesArray.length; iIdx++) {
- let i = nodesArray[iIdx];
- if (i !== m) {
- //Keep old energy value for sum modification below
- let cell = colm[iIdx];
- let oldDx = cell[0];
- let oldDy = cell[1];
-
- //Calc new energy:
- let x_i = nodes[i].x;
- let y_i = nodes[i].y;
- let denominator = 1.0 / Math.sqrt(Math.pow(x_m - x_i, 2) + Math.pow(y_m - y_i, 2));
- let dx = kcolm[i] * ((x_m - x_i) - lcolm[i] * (x_m - x_i) * denominator);
- let dy = kcolm[i] * ((y_m - y_i) - lcolm[i] * (y_m - y_i) * denominator);
- colm[iIdx] = [dx, dy];
- dE_dx += dx;
- dE_dy += dy;
-
- //add new energy to sum of each column
- let sum = this.E_sums[i];
- sum[0] += (dx-oldDx);
- sum[1] += (dy-oldDy);
- }
- }
- //Store sum at -1 index
- this.E_sums[m] = [dE_dx, dE_dy];
- }
- }
-
- export default KamadaKawai;
|