/*
|
|
Ported to JavaScript by Lazar Laszlo 2011
|
|
|
|
lazarsoft@gmail.com, www.lazarsoft.info
|
|
|
|
*/
|
|
|
|
/*
|
|
*
|
|
* Copyright 2007 ZXing authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
|
|
function ReedSolomonDecoder(field)
|
|
{
|
|
this.field = field;
|
|
this.decode=function(received, twoS)
|
|
{
|
|
var poly = new GF256Poly(this.field, received);
|
|
var syndromeCoefficients = new Array(twoS);
|
|
for(var i=0;i<syndromeCoefficients.length;i++)syndromeCoefficients[i]=0;
|
|
var dataMatrix = false;//this.field.Equals(GF256.DATA_MATRIX_FIELD);
|
|
var noError = true;
|
|
for (var i = 0; i < twoS; i++)
|
|
{
|
|
// Thanks to sanfordsquires for this fix:
|
|
var evalu = poly.evaluateAt(this.field.exp(dataMatrix?i + 1:i));
|
|
syndromeCoefficients[syndromeCoefficients.length - 1 - i] = evalu;
|
|
if (evalu != 0)
|
|
{
|
|
noError = false;
|
|
}
|
|
}
|
|
if (noError)
|
|
{
|
|
return ;
|
|
}
|
|
var syndrome = new GF256Poly(this.field, syndromeCoefficients);
|
|
var sigmaOmega = this.runEuclideanAlgorithm(this.field.buildMonomial(twoS, 1), syndrome, twoS);
|
|
var sigma = sigmaOmega[0];
|
|
var omega = sigmaOmega[1];
|
|
var errorLocations = this.findErrorLocations(sigma);
|
|
var errorMagnitudes = this.findErrorMagnitudes(omega, errorLocations, dataMatrix);
|
|
for (var i = 0; i < errorLocations.length; i++)
|
|
{
|
|
var position = received.length - 1 - this.field.log(errorLocations[i]);
|
|
if (position < 0)
|
|
{
|
|
throw "ReedSolomonException Bad error location";
|
|
}
|
|
received[position] = GF256.addOrSubtract(received[position], errorMagnitudes[i]);
|
|
}
|
|
}
|
|
|
|
this.runEuclideanAlgorithm=function( a, b, R)
|
|
{
|
|
// Assume a's degree is >= b's
|
|
if (a.Degree < b.Degree)
|
|
{
|
|
var temp = a;
|
|
a = b;
|
|
b = temp;
|
|
}
|
|
|
|
var rLast = a;
|
|
var r = b;
|
|
var sLast = this.field.One;
|
|
var s = this.field.Zero;
|
|
var tLast = this.field.Zero;
|
|
var t = this.field.One;
|
|
|
|
// Run Euclidean algorithm until r's degree is less than R/2
|
|
while (r.Degree >= Math.floor(R / 2))
|
|
{
|
|
var rLastLast = rLast;
|
|
var sLastLast = sLast;
|
|
var tLastLast = tLast;
|
|
rLast = r;
|
|
sLast = s;
|
|
tLast = t;
|
|
|
|
// Divide rLastLast by rLast, with quotient in q and remainder in r
|
|
if (rLast.Zero)
|
|
{
|
|
// Oops, Euclidean algorithm already terminated?
|
|
throw "r_{i-1} was zero";
|
|
}
|
|
r = rLastLast;
|
|
var q = this.field.Zero;
|
|
var denominatorLeadingTerm = rLast.getCoefficient(rLast.Degree);
|
|
var dltInverse = this.field.inverse(denominatorLeadingTerm);
|
|
while (r.Degree >= rLast.Degree && !r.Zero)
|
|
{
|
|
var degreeDiff = r.Degree - rLast.Degree;
|
|
var scale = this.field.multiply(r.getCoefficient(r.Degree), dltInverse);
|
|
q = q.addOrSubtract(this.field.buildMonomial(degreeDiff, scale));
|
|
r = r.addOrSubtract(rLast.multiplyByMonomial(degreeDiff, scale));
|
|
//r.EXE();
|
|
}
|
|
|
|
s = q.multiply1(sLast).addOrSubtract(sLastLast);
|
|
t = q.multiply1(tLast).addOrSubtract(tLastLast);
|
|
}
|
|
|
|
var sigmaTildeAtZero = t.getCoefficient(0);
|
|
if (sigmaTildeAtZero == 0)
|
|
{
|
|
throw "ReedSolomonException sigmaTilde(0) was zero";
|
|
}
|
|
|
|
var inverse = this.field.inverse(sigmaTildeAtZero);
|
|
var sigma = t.multiply2(inverse);
|
|
var omega = r.multiply2(inverse);
|
|
return new Array(sigma, omega);
|
|
}
|
|
this.findErrorLocations=function( errorLocator)
|
|
{
|
|
// This is a direct application of Chien's search
|
|
var numErrors = errorLocator.Degree;
|
|
if (numErrors == 1)
|
|
{
|
|
// shortcut
|
|
return new Array(errorLocator.getCoefficient(1));
|
|
}
|
|
var result = new Array(numErrors);
|
|
var e = 0;
|
|
for (var i = 1; i < 256 && e < numErrors; i++)
|
|
{
|
|
if (errorLocator.evaluateAt(i) == 0)
|
|
{
|
|
result[e] = this.field.inverse(i);
|
|
e++;
|
|
}
|
|
}
|
|
if (e != numErrors)
|
|
{
|
|
throw "Error locator degree does not match number of roots";
|
|
}
|
|
return result;
|
|
}
|
|
this.findErrorMagnitudes=function( errorEvaluator, errorLocations, dataMatrix)
|
|
{
|
|
// This is directly applying Forney's Formula
|
|
var s = errorLocations.length;
|
|
var result = new Array(s);
|
|
for (var i = 0; i < s; i++)
|
|
{
|
|
var xiInverse = this.field.inverse(errorLocations[i]);
|
|
var denominator = 1;
|
|
for (var j = 0; j < s; j++)
|
|
{
|
|
if (i != j)
|
|
{
|
|
denominator = this.field.multiply(denominator, GF256.addOrSubtract(1, this.field.multiply(errorLocations[j], xiInverse)));
|
|
}
|
|
}
|
|
result[i] = this.field.multiply(errorEvaluator.evaluateAt(xiInverse), this.field.inverse(denominator));
|
|
// Thanks to sanfordsquires for this fix:
|
|
if (dataMatrix)
|
|
{
|
|
result[i] = this.field.multiply(result[i], xiInverse);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
}
|