/* Ported to JavaScript by Lazar Laszlo 2011 lazarsoft@gmail.com, www.lazarsoft.info */ /* * * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ function ReedSolomonDecoder(field) { this.field = field; this.decode=function(received, twoS) { var poly = new GF256Poly(this.field, received); var syndromeCoefficients = new Array(twoS); for(var i=0;i= b's if (a.Degree < b.Degree) { var temp = a; a = b; b = temp; } var rLast = a; var r = b; var sLast = this.field.One; var s = this.field.Zero; var tLast = this.field.Zero; var t = this.field.One; // Run Euclidean algorithm until r's degree is less than R/2 while (r.Degree >= Math.floor(R / 2)) { var rLastLast = rLast; var sLastLast = sLast; var tLastLast = tLast; rLast = r; sLast = s; tLast = t; // Divide rLastLast by rLast, with quotient in q and remainder in r if (rLast.Zero) { // Oops, Euclidean algorithm already terminated? throw "r_{i-1} was zero"; } r = rLastLast; var q = this.field.Zero; var denominatorLeadingTerm = rLast.getCoefficient(rLast.Degree); var dltInverse = this.field.inverse(denominatorLeadingTerm); while (r.Degree >= rLast.Degree && !r.Zero) { var degreeDiff = r.Degree - rLast.Degree; var scale = this.field.multiply(r.getCoefficient(r.Degree), dltInverse); q = q.addOrSubtract(this.field.buildMonomial(degreeDiff, scale)); r = r.addOrSubtract(rLast.multiplyByMonomial(degreeDiff, scale)); //r.EXE(); } s = q.multiply1(sLast).addOrSubtract(sLastLast); t = q.multiply1(tLast).addOrSubtract(tLastLast); } var sigmaTildeAtZero = t.getCoefficient(0); if (sigmaTildeAtZero == 0) { throw "ReedSolomonException sigmaTilde(0) was zero"; } var inverse = this.field.inverse(sigmaTildeAtZero); var sigma = t.multiply2(inverse); var omega = r.multiply2(inverse); return new Array(sigma, omega); } this.findErrorLocations=function( errorLocator) { // This is a direct application of Chien's search var numErrors = errorLocator.Degree; if (numErrors == 1) { // shortcut return new Array(errorLocator.getCoefficient(1)); } var result = new Array(numErrors); var e = 0; for (var i = 1; i < 256 && e < numErrors; i++) { if (errorLocator.evaluateAt(i) == 0) { result[e] = this.field.inverse(i); e++; } } if (e != numErrors) { throw "Error locator degree does not match number of roots"; } return result; } this.findErrorMagnitudes=function( errorEvaluator, errorLocations, dataMatrix) { // This is directly applying Forney's Formula var s = errorLocations.length; var result = new Array(s); for (var i = 0; i < s; i++) { var xiInverse = this.field.inverse(errorLocations[i]); var denominator = 1; for (var j = 0; j < s; j++) { if (i != j) { denominator = this.field.multiply(denominator, GF256.addOrSubtract(1, this.field.multiply(errorLocations[j], xiInverse))); } } result[i] = this.field.multiply(errorEvaluator.evaluateAt(xiInverse), this.field.inverse(denominator)); // Thanks to sanfordsquires for this fix: if (dataMatrix) { result[i] = this.field.multiply(result[i], xiInverse); } } return result; } }