/* Ported to JavaScript by Lazar Laszlo 2011 lazarsoft@gmail.com, www.lazarsoft.info */ /* * * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ var MIN_SKIP = 3; var MAX_MODULES = 57; var INTEGER_MATH_SHIFT = 8; var CENTER_QUORUM = 2; qrcode.orderBestPatterns=function(patterns) { function distance( pattern1, pattern2) { var xDiff = pattern1.X - pattern2.X; var yDiff = pattern1.Y - pattern2.Y; return Math.sqrt( (xDiff * xDiff + yDiff * yDiff)); } /// Returns the z component of the cross product between vectors BC and BA. function crossProductZ( pointA, pointB, pointC) { var bX = pointB.x; var bY = pointB.y; return ((pointC.x - bX) * (pointA.y - bY)) - ((pointC.y - bY) * (pointA.x - bX)); } // Find distances between pattern centers var zeroOneDistance = distance(patterns[0], patterns[1]); var oneTwoDistance = distance(patterns[1], patterns[2]); var zeroTwoDistance = distance(patterns[0], patterns[2]); var pointA, pointB, pointC; // Assume one closest to other two is B; A and C will just be guesses at first if (oneTwoDistance >= zeroOneDistance && oneTwoDistance >= zeroTwoDistance) { pointB = patterns[0]; pointA = patterns[1]; pointC = patterns[2]; } else if (zeroTwoDistance >= oneTwoDistance && zeroTwoDistance >= zeroOneDistance) { pointB = patterns[1]; pointA = patterns[0]; pointC = patterns[2]; } else { pointB = patterns[2]; pointA = patterns[0]; pointC = patterns[1]; } // Use cross product to figure out whether A and C are correct or flipped. // This asks whether BC x BA has a positive z component, which is the arrangement // we want for A, B, C. If it's negative, then we've got it flipped around and // should swap A and C. if (crossProductZ(pointA, pointB, pointC) < 0.0) { var temp = pointA; pointA = pointC; pointC = temp; } patterns[0] = pointA; patterns[1] = pointB; patterns[2] = pointC; } function FinderPattern(posX, posY, estimatedModuleSize) { this.x=posX; this.y=posY; this.count = 1; this.estimatedModuleSize = estimatedModuleSize; this.__defineGetter__("EstimatedModuleSize", function() { return this.estimatedModuleSize; }); this.__defineGetter__("Count", function() { return this.count; }); this.__defineGetter__("X", function() { return this.x; }); this.__defineGetter__("Y", function() { return this.y; }); this.incrementCount = function() { this.count++; } this.aboutEquals=function( moduleSize, i, j) { if (Math.abs(i - this.y) <= moduleSize && Math.abs(j - this.x) <= moduleSize) { var moduleSizeDiff = Math.abs(moduleSize - this.estimatedModuleSize); return moduleSizeDiff <= 1.0 || moduleSizeDiff / this.estimatedModuleSize <= 1.0; } return false; } } function FinderPatternInfo(patternCenters) { this.bottomLeft = patternCenters[0]; this.topLeft = patternCenters[1]; this.topRight = patternCenters[2]; this.__defineGetter__("BottomLeft", function() { return this.bottomLeft; }); this.__defineGetter__("TopLeft", function() { return this.topLeft; }); this.__defineGetter__("TopRight", function() { return this.topRight; }); } function FinderPatternFinder() { this.image=null; this.possibleCenters = []; this.hasSkipped = false; this.crossCheckStateCount = new Array(0,0,0,0,0); this.resultPointCallback = null; this.__defineGetter__("CrossCheckStateCount", function() { this.crossCheckStateCount[0] = 0; this.crossCheckStateCount[1] = 0; this.crossCheckStateCount[2] = 0; this.crossCheckStateCount[3] = 0; this.crossCheckStateCount[4] = 0; return this.crossCheckStateCount; }); this.foundPatternCross=function( stateCount) { var totalModuleSize = 0; for (var i = 0; i < 5; i++) { var count = stateCount[i]; if (count == 0) { return false; } totalModuleSize += count; } if (totalModuleSize < 7) { return false; } var moduleSize = Math.floor((totalModuleSize << INTEGER_MATH_SHIFT) / 7); var maxVariance = Math.floor(moduleSize / 2); // Allow less than 50% variance from 1-1-3-1-1 proportions return Math.abs(moduleSize - (stateCount[0] << INTEGER_MATH_SHIFT)) < maxVariance && Math.abs(moduleSize - (stateCount[1] << INTEGER_MATH_SHIFT)) < maxVariance && Math.abs(3 * moduleSize - (stateCount[2] << INTEGER_MATH_SHIFT)) < 3 * maxVariance && Math.abs(moduleSize - (stateCount[3] << INTEGER_MATH_SHIFT)) < maxVariance && Math.abs(moduleSize - (stateCount[4] << INTEGER_MATH_SHIFT)) < maxVariance; } this.centerFromEnd=function( stateCount, end) { return (end - stateCount[4] - stateCount[3]) - stateCount[2] / 2.0; } this.crossCheckVertical=function( startI, centerJ, maxCount, originalStateCountTotal) { var image = this.image; var maxI = qrcode.height; var stateCount = this.CrossCheckStateCount; // Start counting up from center var i = startI; while (i >= 0 && image[centerJ + i*qrcode.width]) { stateCount[2]++; i--; } if (i < 0) { return NaN; } while (i >= 0 && !image[centerJ +i*qrcode.width] && stateCount[1] <= maxCount) { stateCount[1]++; i--; } // If already too many modules in this state or ran off the edge: if (i < 0 || stateCount[1] > maxCount) { return NaN; } while (i >= 0 && image[centerJ + i*qrcode.width] && stateCount[0] <= maxCount) { stateCount[0]++; i--; } if (stateCount[0] > maxCount) { return NaN; } // Now also count down from center i = startI + 1; while (i < maxI && image[centerJ +i*qrcode.width]) { stateCount[2]++; i++; } if (i == maxI) { return NaN; } while (i < maxI && !image[centerJ + i*qrcode.width] && stateCount[3] < maxCount) { stateCount[3]++; i++; } if (i == maxI || stateCount[3] >= maxCount) { return NaN; } while (i < maxI && image[centerJ + i*qrcode.width] && stateCount[4] < maxCount) { stateCount[4]++; i++; } if (stateCount[4] >= maxCount) { return NaN; } // If we found a finder-pattern-like section, but its size is more than 40% different than // the original, assume it's a false positive var stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; if (5 * Math.abs(stateCountTotal - originalStateCountTotal) >= 2 * originalStateCountTotal) { return NaN; } return this.foundPatternCross(stateCount)?this.centerFromEnd(stateCount, i):NaN; } this.crossCheckHorizontal=function( startJ, centerI, maxCount, originalStateCountTotal) { var image = this.image; var maxJ = qrcode.width; var stateCount = this.CrossCheckStateCount; var j = startJ; while (j >= 0 && image[j+ centerI*qrcode.width]) { stateCount[2]++; j--; } if (j < 0) { return NaN; } while (j >= 0 && !image[j+ centerI*qrcode.width] && stateCount[1] <= maxCount) { stateCount[1]++; j--; } if (j < 0 || stateCount[1] > maxCount) { return NaN; } while (j >= 0 && image[j+ centerI*qrcode.width] && stateCount[0] <= maxCount) { stateCount[0]++; j--; } if (stateCount[0] > maxCount) { return NaN; } j = startJ + 1; while (j < maxJ && image[j+ centerI*qrcode.width]) { stateCount[2]++; j++; } if (j == maxJ) { return NaN; } while (j < maxJ && !image[j+ centerI*qrcode.width] && stateCount[3] < maxCount) { stateCount[3]++; j++; } if (j == maxJ || stateCount[3] >= maxCount) { return NaN; } while (j < maxJ && image[j+ centerI*qrcode.width] && stateCount[4] < maxCount) { stateCount[4]++; j++; } if (stateCount[4] >= maxCount) { return NaN; } // If we found a finder-pattern-like section, but its size is significantly different than // the original, assume it's a false positive var stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; if (5 * Math.abs(stateCountTotal - originalStateCountTotal) >= originalStateCountTotal) { return NaN; } return this.foundPatternCross(stateCount)?this.centerFromEnd(stateCount, j):NaN; } this.handlePossibleCenter=function( stateCount, i, j) { var stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; var centerJ = this.centerFromEnd(stateCount, j); //float var centerI = this.crossCheckVertical(i, Math.floor( centerJ), stateCount[2], stateCountTotal); //float if (!isNaN(centerI)) { // Re-cross check centerJ = this.crossCheckHorizontal(Math.floor( centerJ), Math.floor( centerI), stateCount[2], stateCountTotal); if (!isNaN(centerJ)) { var estimatedModuleSize = stateCountTotal / 7.0; var found = false; var max = this.possibleCenters.length; for (var index = 0; index < max; index++) { var center = this.possibleCenters[index]; // Look for about the same center and module size: if (center.aboutEquals(estimatedModuleSize, centerI, centerJ)) { center.incrementCount(); found = true; break; } } if (!found) { var point = new FinderPattern(centerJ, centerI, estimatedModuleSize); this.possibleCenters.push(point); if (this.resultPointCallback != null) { this.resultPointCallback.foundPossibleResultPoint(point); } } return true; } } return false; } this.selectBestPatterns=function() { var startSize = this.possibleCenters.length; if (startSize < 3) { // Couldn't find enough finder patterns throw "Couldn't find enough finder patterns (found " + startSize + ")" } // Filter outlier possibilities whose module size is too different if (startSize > 3) { // But we can only afford to do so if we have at least 4 possibilities to choose from var totalModuleSize = 0.0; var square = 0.0; for (var i = 0; i < startSize; i++) { //totalModuleSize += this.possibleCenters[i].EstimatedModuleSize; var centerValue=this.possibleCenters[i].EstimatedModuleSize; totalModuleSize += centerValue; square += (centerValue * centerValue); } var average = totalModuleSize / startSize; this.possibleCenters.sort(function(center1,center2) { var dA=Math.abs(center2.EstimatedModuleSize - average); var dB=Math.abs(center1.EstimatedModuleSize - average); if (dA < dB) { return (-1); } else if (dA == dB) { return 0; } else { return 1; } }); var stdDev = Math.sqrt(square / startSize - average * average); var limit = Math.max(0.2 * average, stdDev); //for (var i = 0; i < this.possibleCenters.length && this.possibleCenters.length > 3; i++) for (var i = this.possibleCenters.length - 1; i >= 0 ; i--) { var pattern = this.possibleCenters[i]; //if (Math.abs(pattern.EstimatedModuleSize - average) > 0.2 * average) if (Math.abs(pattern.EstimatedModuleSize - average) > limit) { //this.possibleCenters.remove(i); this.possibleCenters.splice(i,1); //i--; } } } if (this.possibleCenters.length > 3) { // Throw away all but those first size candidate points we found. this.possibleCenters.sort(function(a, b){ if (a.count > b.count){return -1;} if (a.count < b.count){return 1;} return 0; }); } return new Array( this.possibleCenters[0], this.possibleCenters[1], this.possibleCenters[2]); } this.findRowSkip=function() { var max = this.possibleCenters.length; if (max <= 1) { return 0; } var firstConfirmedCenter = null; for (var i = 0; i < max; i++) { var center = this.possibleCenters[i]; if (center.Count >= CENTER_QUORUM) { if (firstConfirmedCenter == null) { firstConfirmedCenter = center; } else { // We have two confirmed centers // How far down can we skip before resuming looking for the next // pattern? In the worst case, only the difference between the // difference in the x / y coordinates of the two centers. // This is the case where you find top left last. this.hasSkipped = true; return Math.floor ((Math.abs(firstConfirmedCenter.X - center.X) - Math.abs(firstConfirmedCenter.Y - center.Y)) / 2); } } } return 0; } this.haveMultiplyConfirmedCenters=function() { var confirmedCount = 0; var totalModuleSize = 0.0; var max = this.possibleCenters.length; for (var i = 0; i < max; i++) { var pattern = this.possibleCenters[i]; if (pattern.Count >= CENTER_QUORUM) { confirmedCount++; totalModuleSize += pattern.EstimatedModuleSize; } } if (confirmedCount < 3) { return false; } // OK, we have at least 3 confirmed centers, but, it's possible that one is a "false positive" // and that we need to keep looking. We detect this by asking if the estimated module sizes // vary too much. We arbitrarily say that when the total deviation from average exceeds // 5% of the total module size estimates, it's too much. var average = totalModuleSize / max; var totalDeviation = 0.0; for (var i = 0; i < max; i++) { pattern = this.possibleCenters[i]; totalDeviation += Math.abs(pattern.EstimatedModuleSize - average); } return totalDeviation <= 0.05 * totalModuleSize; } this.findFinderPattern = function(image){ var tryHarder = false; this.image=image; var maxI = qrcode.height; var maxJ = qrcode.width; var iSkip = Math.floor((3 * maxI) / (4 * MAX_MODULES)); if (iSkip < MIN_SKIP || tryHarder) { iSkip = MIN_SKIP; } var done = false; var stateCount = new Array(5); for (var i = iSkip - 1; i < maxI && !done; i += iSkip) { // Get a row of black/white values stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; var currentState = 0; for (var j = 0; j < maxJ; j++) { if (image[j+i*qrcode.width] ) { // Black pixel if ((currentState & 1) == 1) { // Counting white pixels currentState++; } stateCount[currentState]++; } else { // White pixel if ((currentState & 1) == 0) { // Counting black pixels if (currentState == 4) { // A winner? if (this.foundPatternCross(stateCount)) { // Yes var confirmed = this.handlePossibleCenter(stateCount, i, j); if (confirmed) { // Start examining every other line. Checking each line turned out to be too // expensive and didn't improve performance. iSkip = 2; if (this.hasSkipped) { done = this.haveMultiplyConfirmedCenters(); } else { var rowSkip = this.findRowSkip(); if (rowSkip > stateCount[2]) { // Skip rows between row of lower confirmed center // and top of presumed third confirmed center // but back up a bit to get a full chance of detecting // it, entire width of center of finder pattern // Skip by rowSkip, but back off by stateCount[2] (size of last center // of pattern we saw) to be conservative, and also back off by iSkip which // is about to be re-added i += rowSkip - stateCount[2] - iSkip; j = maxJ - 1; } } } else { // Advance to next black pixel do { j++; } while (j < maxJ && !image[j + i*qrcode.width]); j--; // back up to that last white pixel } // Clear state to start looking again currentState = 0; stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; } else { // No, shift counts back by two stateCount[0] = stateCount[2]; stateCount[1] = stateCount[3]; stateCount[2] = stateCount[4]; stateCount[3] = 1; stateCount[4] = 0; currentState = 3; } } else { stateCount[++currentState]++; } } else { // Counting white pixels stateCount[currentState]++; } } } if (this.foundPatternCross(stateCount)) { var confirmed = this.handlePossibleCenter(stateCount, i, maxJ); if (confirmed) { iSkip = stateCount[0]; if (this.hasSkipped) { // Found a third one done = this.haveMultiplyConfirmedCenters(); } } } } var patternInfo = this.selectBestPatterns(); qrcode.orderBestPatterns(patternInfo); return new FinderPatternInfo(patternInfo); }; }