/* Ported to JavaScript by Lazar Laszlo 2011 lazarsoft@gmail.com, www.lazarsoft.info */ /* * * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ function PerspectiveTransform( a11, a21, a31, a12, a22, a32, a13, a23, a33) { this.a11 = a11; this.a12 = a12; this.a13 = a13; this.a21 = a21; this.a22 = a22; this.a23 = a23; this.a31 = a31; this.a32 = a32; this.a33 = a33; this.transformPoints1=function( points) { var max = points.length; var a11 = this.a11; var a12 = this.a12; var a13 = this.a13; var a21 = this.a21; var a22 = this.a22; var a23 = this.a23; var a31 = this.a31; var a32 = this.a32; var a33 = this.a33; for (var i = 0; i < max; i += 2) { var x = points[i]; var y = points[i + 1]; var denominator = a13 * x + a23 * y + a33; points[i] = (a11 * x + a21 * y + a31) / denominator; points[i + 1] = (a12 * x + a22 * y + a32) / denominator; } } this. transformPoints2=function(xValues, yValues) { var n = xValues.length; for (var i = 0; i < n; i++) { var x = xValues[i]; var y = yValues[i]; var denominator = this.a13 * x + this.a23 * y + this.a33; xValues[i] = (this.a11 * x + this.a21 * y + this.a31) / denominator; yValues[i] = (this.a12 * x + this.a22 * y + this.a32) / denominator; } } this.buildAdjoint=function() { // Adjoint is the transpose of the cofactor matrix: return new PerspectiveTransform(this.a22 * this.a33 - this.a23 * this.a32, this.a23 * this.a31 - this.a21 * this.a33, this.a21 * this.a32 - this.a22 * this.a31, this.a13 * this.a32 - this.a12 * this.a33, this.a11 * this.a33 - this.a13 * this.a31, this.a12 * this.a31 - this.a11 * this.a32, this.a12 * this.a23 - this.a13 * this.a22, this.a13 * this.a21 - this.a11 * this.a23, this.a11 * this.a22 - this.a12 * this.a21); } this.times=function( other) { return new PerspectiveTransform(this.a11 * other.a11 + this.a21 * other.a12 + this.a31 * other.a13, this.a11 * other.a21 + this.a21 * other.a22 + this.a31 * other.a23, this.a11 * other.a31 + this.a21 * other.a32 + this.a31 * other.a33, this.a12 * other.a11 + this.a22 * other.a12 + this.a32 * other.a13, this.a12 * other.a21 + this.a22 * other.a22 + this.a32 * other.a23, this.a12 * other.a31 + this.a22 * other.a32 + this.a32 * other.a33, this.a13 * other.a11 + this.a23 * other.a12 +this.a33 * other.a13, this.a13 * other.a21 + this.a23 * other.a22 + this.a33 * other.a23, this.a13 * other.a31 + this.a23 * other.a32 + this.a33 * other.a33); } } PerspectiveTransform.quadrilateralToQuadrilateral=function( x0, y0, x1, y1, x2, y2, x3, y3, x0p, y0p, x1p, y1p, x2p, y2p, x3p, y3p) { var qToS = this.quadrilateralToSquare(x0, y0, x1, y1, x2, y2, x3, y3); var sToQ = this.squareToQuadrilateral(x0p, y0p, x1p, y1p, x2p, y2p, x3p, y3p); return sToQ.times(qToS); } PerspectiveTransform.squareToQuadrilateral=function( x0, y0, x1, y1, x2, y2, x3, y3) { var dy2 = y3 - y2; var dy3 = y0 - y1 + y2 - y3; if (dy2 == 0.0 && dy3 == 0.0) { return new PerspectiveTransform(x1 - x0, x2 - x1, x0, y1 - y0, y2 - y1, y0, 0.0, 0.0, 1.0); } else { var dx1 = x1 - x2; var dx2 = x3 - x2; var dx3 = x0 - x1 + x2 - x3; var dy1 = y1 - y2; var denominator = dx1 * dy2 - dx2 * dy1; var a13 = (dx3 * dy2 - dx2 * dy3) / denominator; var a23 = (dx1 * dy3 - dx3 * dy1) / denominator; return new PerspectiveTransform(x1 - x0 + a13 * x1, x3 - x0 + a23 * x3, x0, y1 - y0 + a13 * y1, y3 - y0 + a23 * y3, y0, a13, a23, 1.0); } } PerspectiveTransform.quadrilateralToSquare=function( x0, y0, x1, y1, x2, y2, x3, y3) { // Here, the adjoint serves as the inverse: return this.squareToQuadrilateral(x0, y0, x1, y1, x2, y2, x3, y3).buildAdjoint(); } function DetectorResult(bits, points) { this.bits = bits; this.points = points; } function Detector(image) { this.image=image; this.resultPointCallback = null; this.sizeOfBlackWhiteBlackRun=function( fromX, fromY, toX, toY) { // Mild variant of Bresenham's algorithm; // see http://en.wikipedia.org/wiki/Bresenham's_line_algorithm var steep = Math.abs(toY - fromY) > Math.abs(toX - fromX); if (steep) { var temp = fromX; fromX = fromY; fromY = temp; temp = toX; toX = toY; toY = temp; } var dx = Math.abs(toX - fromX); var dy = Math.abs(toY - fromY); var error = - dx >> 1; var ystep = fromY < toY?1:- 1; var xstep = fromX < toX?1:- 1; var state = 0; // In black pixels, looking for white, first or second time for (var x = fromX, y = fromY; x != toX; x += xstep) { var realX = steep?y:x; var realY = steep?x:y; if (state == 1) { // In white pixels, looking for black if (this.image[realX + realY*qrcode.width]) { state++; } } else { if (!this.image[realX + realY*qrcode.width]) { state++; } } if (state == 3) { // Found black, white, black, and stumbled back onto white; done var diffX = x - fromX; var diffY = y - fromY; return Math.sqrt( (diffX * diffX + diffY * diffY)); } error += dy; if (error > 0) { if (y == toY) { break; } y += ystep; error -= dx; } } var diffX2 = toX - fromX; var diffY2 = toY - fromY; return Math.sqrt( (diffX2 * diffX2 + diffY2 * diffY2)); } this.sizeOfBlackWhiteBlackRunBothWays=function( fromX, fromY, toX, toY) { var result = this.sizeOfBlackWhiteBlackRun(fromX, fromY, toX, toY); // Now count other way -- don't run off image though of course var scale = 1.0; var otherToX = fromX - (toX - fromX); if (otherToX < 0) { scale = fromX / (fromX - otherToX); otherToX = 0; } else if (otherToX >= qrcode.width) { scale = (qrcode.width - 1 - fromX) / (otherToX - fromX); otherToX = qrcode.width - 1; } var otherToY = Math.floor (fromY - (toY - fromY) * scale); scale = 1.0; if (otherToY < 0) { scale = fromY / (fromY - otherToY); otherToY = 0; } else if (otherToY >= qrcode.height) { scale = (qrcode.height - 1 - fromY) / (otherToY - fromY); otherToY = qrcode.height - 1; } otherToX = Math.floor (fromX + (otherToX - fromX) * scale); result += this.sizeOfBlackWhiteBlackRun(fromX, fromY, otherToX, otherToY); return result - 1.0; // -1 because we counted the middle pixel twice } this.calculateModuleSizeOneWay=function( pattern, otherPattern) { var moduleSizeEst1 = this.sizeOfBlackWhiteBlackRunBothWays(Math.floor( pattern.X), Math.floor( pattern.Y), Math.floor( otherPattern.X), Math.floor(otherPattern.Y)); var moduleSizeEst2 = this.sizeOfBlackWhiteBlackRunBothWays(Math.floor(otherPattern.X), Math.floor(otherPattern.Y), Math.floor( pattern.X), Math.floor(pattern.Y)); if (isNaN(moduleSizeEst1)) { return moduleSizeEst2 / 7.0; } if (isNaN(moduleSizeEst2)) { return moduleSizeEst1 / 7.0; } // Average them, and divide by 7 since we've counted the width of 3 black modules, // and 1 white and 1 black module on either side. Ergo, divide sum by 14. return (moduleSizeEst1 + moduleSizeEst2) / 14.0; } this.calculateModuleSize=function( topLeft, topRight, bottomLeft) { // Take the average return (this.calculateModuleSizeOneWay(topLeft, topRight) + this.calculateModuleSizeOneWay(topLeft, bottomLeft)) / 2.0; } this.distance=function( pattern1, pattern2) { var xDiff = pattern1.X - pattern2.X; var yDiff = pattern1.Y - pattern2.Y; return Math.sqrt( (xDiff * xDiff + yDiff * yDiff)); } this.computeDimension=function( topLeft, topRight, bottomLeft, moduleSize) { var tltrCentersDimension = Math.round(this.distance(topLeft, topRight) / moduleSize); var tlblCentersDimension = Math.round(this.distance(topLeft, bottomLeft) / moduleSize); var dimension = ((tltrCentersDimension + tlblCentersDimension) >> 1) + 7; switch (dimension & 0x03) { // mod 4 case 0: dimension++; break; // 1? do nothing case 2: dimension--; break; case 3: throw "Error"; } return dimension; } this.findAlignmentInRegion=function( overallEstModuleSize, estAlignmentX, estAlignmentY, allowanceFactor) { // Look for an alignment pattern (3 modules in size) around where it // should be var allowance = Math.floor (allowanceFactor * overallEstModuleSize); var alignmentAreaLeftX = Math.max(0, estAlignmentX - allowance); var alignmentAreaRightX = Math.min(qrcode.width - 1, estAlignmentX + allowance); if (alignmentAreaRightX - alignmentAreaLeftX < overallEstModuleSize * 3) { throw "Error"; } var alignmentAreaTopY = Math.max(0, estAlignmentY - allowance); var alignmentAreaBottomY = Math.min(qrcode.height - 1, estAlignmentY + allowance); var alignmentFinder = new AlignmentPatternFinder(this.image, alignmentAreaLeftX, alignmentAreaTopY, alignmentAreaRightX - alignmentAreaLeftX, alignmentAreaBottomY - alignmentAreaTopY, overallEstModuleSize, this.resultPointCallback); return alignmentFinder.find(); } this.createTransform=function( topLeft, topRight, bottomLeft, alignmentPattern, dimension) { var dimMinusThree = dimension - 3.5; var bottomRightX; var bottomRightY; var sourceBottomRightX; var sourceBottomRightY; if (alignmentPattern != null) { bottomRightX = alignmentPattern.X; bottomRightY = alignmentPattern.Y; sourceBottomRightX = sourceBottomRightY = dimMinusThree - 3.0; } else { // Don't have an alignment pattern, just make up the bottom-right point bottomRightX = (topRight.X - topLeft.X) + bottomLeft.X; bottomRightY = (topRight.Y - topLeft.Y) + bottomLeft.Y; sourceBottomRightX = sourceBottomRightY = dimMinusThree; } var transform = PerspectiveTransform.quadrilateralToQuadrilateral(3.5, 3.5, dimMinusThree, 3.5, sourceBottomRightX, sourceBottomRightY, 3.5, dimMinusThree, topLeft.X, topLeft.Y, topRight.X, topRight.Y, bottomRightX, bottomRightY, bottomLeft.X, bottomLeft.Y); return transform; } this.sampleGrid=function( image, transform, dimension) { var sampler = GridSampler; return sampler.sampleGrid3(image, dimension, transform); } this.processFinderPatternInfo = function( info) { var topLeft = info.TopLeft; var topRight = info.TopRight; var bottomLeft = info.BottomLeft; var moduleSize = this.calculateModuleSize(topLeft, topRight, bottomLeft); if (moduleSize < 1.0) { throw "Error"; } var dimension = this.computeDimension(topLeft, topRight, bottomLeft, moduleSize); var provisionalVersion = Version.getProvisionalVersionForDimension(dimension); var modulesBetweenFPCenters = provisionalVersion.DimensionForVersion - 7; var alignmentPattern = null; // Anything above version 1 has an alignment pattern if (provisionalVersion.AlignmentPatternCenters.length > 0) { // Guess where a "bottom right" finder pattern would have been var bottomRightX = topRight.X - topLeft.X + bottomLeft.X; var bottomRightY = topRight.Y - topLeft.Y + bottomLeft.Y; // Estimate that alignment pattern is closer by 3 modules // from "bottom right" to known top left location var correctionToTopLeft = 1.0 - 3.0 / modulesBetweenFPCenters; var estAlignmentX = Math.floor (topLeft.X + correctionToTopLeft * (bottomRightX - topLeft.X)); var estAlignmentY = Math.floor (topLeft.Y + correctionToTopLeft * (bottomRightY - topLeft.Y)); // Kind of arbitrary -- expand search radius before giving up for (var i = 4; i <= 16; i <<= 1) { //try //{ alignmentPattern = this.findAlignmentInRegion(moduleSize, estAlignmentX, estAlignmentY, i); break; //} //catch (re) //{ // try next round //} } // If we didn't find alignment pattern... well try anyway without it } var transform = this.createTransform(topLeft, topRight, bottomLeft, alignmentPattern, dimension); var bits = this.sampleGrid(this.image, transform, dimension); var points; if (alignmentPattern == null) { points = new Array(bottomLeft, topLeft, topRight); } else { points = new Array(bottomLeft, topLeft, topRight, alignmentPattern); } return new DetectorResult(bits, points); } this.detect=function() { var info = new FinderPatternFinder().findFinderPattern(this.image); return this.processFinderPatternInfo(info); } }