|
|
- /**
- * @license Fraction.js v3.3.1 09/09/2015
- * http://www.xarg.org/2014/03/rational-numbers-in-javascript/
- *
- * Copyright (c) 2015, Robert Eisele (robert@xarg.org)
- * Dual licensed under the MIT or GPL Version 2 licenses.
- **/
-
-
- /**
- *
- * This class offers the possibility to calculate fractions.
- * You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
- *
- * Array/Object form
- * [ 0 => <nominator>, 1 => <denominator> ]
- * [ n => <nominator>, d => <denominator> ]
- *
- * Integer form
- * - Single integer value
- *
- * Double form
- * - Single double value
- *
- * String form
- * 123.456 - a simple double
- * 123/456 - a string fraction
- * 123.'456' - a double with repeating decimal places
- * 123.(456) - synonym
- * 123.45'6' - a double with repeating last place
- * 123.45(6) - synonym
- *
- * Example:
- *
- * var f = new Fraction("9.4'31'");
- * f.mul([-4, 3]).div(4.9);
- *
- */
-
- (function(root) {
-
- "use strict";
-
- // Maximum search depth for cyclic rational numbers. 2000 should be more than enough.
- // Example: 1/7 = 0.(142857) has 6 repeating decimal places.
- // If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits
- var MAX_CYCLE_LEN = 2000;
-
- // Parsed data to avoid calling "new" all the time
- var P = {
- "s": 1,
- "n": 0,
- "d": 1
- };
-
- function assign(n, s) {
-
- if (isNaN(n = parseInt(n, 10))) {
- throwInvalidParam();
- }
- return n * s;
- }
-
- function throwInvalidParam() {
- throw "Invalid Param";
- }
-
- var parse = function(p1, p2) {
-
- var n = 0, d = 1, s = 1;
- var v = 0, w = 0, x = 0, y = 1, z = 1;
-
- var A = 0, B = 1;
- var C = 1, D = 1;
-
- var N = 10000000;
- var M;
-
- if (p1 === undefined || p1 === null) {
- /* void */
- } else if (p2 !== undefined) {
- n = p1;
- d = p2;
- s = n * d;
- } else
- switch (typeof p1) {
-
- case "object":
- {
- if ("d" in p1 && "n" in p1) {
- n = p1["n"];
- d = p1["d"];
- if ("s" in p1)
- n*= p1["s"];
- } else if (0 in p1) {
- n = p1[0];
- if (1 in p1)
- d = p1[1];
- } else {
- throwInvalidParam();
- }
- s = n * d;
- break;
- }
- case "number":
- {
- if (p1 < 0) {
- s = p1;
- p1 = -p1;
- }
-
- if (p1 % 1 === 0) {
- n = p1;
- } else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow
-
- if (p1 >= 1) {
- z = Math.pow(10, Math.floor(1 + Math.log(p1) / Math.LN10));
- p1/= z;
- }
-
- // Using Farey Sequences
- // http://www.johndcook.com/blog/2010/10/20/best-rational-approximation/
-
- while (B <= N && D <= N) {
- M = (A + C) / (B + D);
-
- if (p1 === M) {
- if (B + D <= N) {
- n = A + C;
- d = B + D;
- } else if (D > B) {
- n = C;
- d = D;
- } else {
- n = A;
- d = B;
- }
- break;
-
- } else {
-
- if (p1 > M) {
- A+= C;
- B+= D;
- } else {
- C+= A;
- D+= B;
- }
-
- if (B > N) {
- n = C;
- d = D;
- } else {
- n = A;
- d = B;
- }
- }
- }
- n*= z;
- } else if (isNaN(p1) || isNaN(p2)) {
- d = n = NaN;
- }
- break;
- }
- case "string":
- {
- B = p1.match(/\d+|./g);
-
- if (B[A] === '-') {// Check for minus sign at the beginning
- s = -1;
- A++;
- } else if (B[A] === '+') {// Check for plus sign at the beginning
- A++;
- }
-
- if (B.length === A + 1) { // Check if it's just a simple number "1234"
- w = assign(B[A++], s);
- } else if (B[A + 1] === '.' || B[A] === '.') { // Check if it's a decimal number
-
- if (B[A] !== '.') { // Handle 0.5 and .5
- v = assign(B[A++], s);
- }
- A++;
-
- // Check for decimal places
- if (A + 1 === B.length || B[A + 1] === '(' && B[A + 3] === ')' || B[A + 1] === "'" && B[A + 3] === "'") {
- w = assign(B[A], s);
- y = Math.pow(10, B[A].length);
- A++;
- }
-
- // Check for repeating places
- if (B[A] === '(' && B[A + 2] === ')' || B[A] === "'" && B[A + 2] === "'") {
- x = assign(B[A + 1], s);
- z = Math.pow(10, B[A + 1].length) - 1;
- A+= 3;
- }
-
- } else if (B[A + 1] === '/' || B[A + 1] === ':') { // Check for a simple fraction "123/456" or "123:456"
- w = assign(B[A], s);
- y = assign(B[A + 2], 1);
- A+= 3;
- } else if (B[A + 3] === '/' && B[A + 1] === ' ') { // Check for a complex fraction "123 1/2"
- v = assign(B[A], s);
- w = assign(B[A + 2], s);
- y = assign(B[A + 4], 1);
- A+= 5;
- }
-
- if (B.length <= A) { // Check for more tokens on the stack
- d = y * z;
- s = /* void */
- n = x + d * v + z * w;
- break;
- }
-
- /* Fall through on error */
- }
- default:
- throwInvalidParam();
- }
-
- if (d === 0) {
- throw "DIV/0";
- }
-
- P["s"] = s < 0 ? -1 : 1;
- P["n"] = Math.abs(n);
- P["d"] = Math.abs(d);
- };
-
- var modpow = function(b, e, m) {
-
- for (var r = 1; e > 0; b = (b * b) % m, e >>= 1) {
-
- if (e & 1) {
- r = (r * b) % m;
- }
- }
- return r;
- };
-
- var cycleLen = function(n, d) {
-
- for (; d % 2 === 0;
- d/= 2) {}
-
- for (; d % 5 === 0;
- d/= 5) {}
-
- if (d === 1) // Catch non-cyclic numbers
- return 0;
-
- // If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem:
- // 10^(d-1) % d == 1
- // However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone,
- // as we want to translate the numbers to strings.
-
- var rem = 10 % d;
-
- for (var t = 1; rem !== 1; t++) {
- rem = rem * 10 % d;
-
- if (t > MAX_CYCLE_LEN)
- return 0; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1`
- }
- return t;
- };
-
- var cycleStart = function(n, d, len) {
-
- var rem1 = 1;
- var rem2 = modpow(10, len, d);
-
- for (var t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE)
- // Solve 10^s == 10^(s+t) (mod d)
-
- if (rem1 === rem2)
- return t;
-
- rem1 = rem1 * 10 % d;
- rem2 = rem2 * 10 % d;
- }
- return 0;
- };
-
- var gcd = function(a, b) {
-
- if (!a) return b;
- if (!b) return a;
-
- while (1) {
- a%= b;
- if (!a) return b;
- b%= a;
- if (!b) return a;
- }
- };
-
- /**
- * Module constructor
- *
- * @constructor
- * @param {number|Fraction} a
- * @param {number=} b
- */
- function Fraction(a, b) {
-
- if (!(this instanceof Fraction)) {
- return new Fraction(a, b);
- }
-
- parse(a, b);
-
- if (Fraction['REDUCE']) {
- a = gcd(P["d"], P["n"]); // Abuse a
- } else {
- a = 1;
- }
-
- this["s"] = P["s"];
- this["n"] = P["n"] / a;
- this["d"] = P["d"] / a;
- }
-
- /**
- * Boolean global variable to be able to disable automatic reduction of the fraction
- *
- */
- Fraction['REDUCE'] = 1;
-
- Fraction.prototype = {
-
- "s": 1,
- "n": 0,
- "d": 1,
-
- /**
- * Calculates the absolute value
- *
- * Ex: new Fraction(-4).abs() => 4
- **/
- "abs": function() {
-
- return new Fraction(this["n"], this["d"]);
- },
-
- /**
- * Inverts the sign of the current fraction
- *
- * Ex: new Fraction(-4).neg() => 4
- **/
- "neg": function() {
-
- return new Fraction(-this["s"] * this["n"], this["d"]);
- },
-
- /**
- * Adds two rational numbers
- *
- * Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30
- **/
- "add": function(a, b) {
-
- parse(a, b);
- return new Fraction(
- this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"],
- this["d"] * P["d"]
- );
- },
-
- /**
- * Subtracts two rational numbers
- *
- * Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30
- **/
- "sub": function(a, b) {
-
- parse(a, b);
- return new Fraction(
- this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"],
- this["d"] * P["d"]
- );
- },
-
- /**
- * Multiplies two rational numbers
- *
- * Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111
- **/
- "mul": function(a, b) {
-
- parse(a, b);
- return new Fraction(
- this["s"] * P["s"] * this["n"] * P["n"],
- this["d"] * P["d"]
- );
- },
-
- /**
- * Divides two rational numbers
- *
- * Ex: new Fraction("-17.(345)").inverse().div(3)
- **/
- "div": function(a, b) {
-
- parse(a, b);
- return new Fraction(
- this["s"] * P["s"] * this["n"] * P["d"],
- this["d"] * P["n"]
- );
- },
-
- /**
- * Clones the actual object
- *
- * Ex: new Fraction("-17.(345)").clone()
- **/
- "clone": function() {
- return new Fraction(this);
- },
-
- /**
- * Calculates the modulo of two rational numbers - a more precise fmod
- *
- * Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6)
- **/
- "mod": function(a, b) {
-
- if (isNaN(this['n']) || isNaN(this['d'])) {
- return new Fraction(NaN);
- }
-
- if (a === undefined) {
- return new Fraction(this["s"] * this["n"] % this["d"], 1);
- }
-
- parse(a, b);
- if (0 === P["n"] && 0 === this["d"]) {
- Fraction(0, 0); // Throw div/0
- }
-
- /*
- * First silly attempt, kinda slow
- *
- return that["sub"]({
- "n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)),
- "d": num["d"],
- "s": this["s"]
- });*/
-
- /*
- * New attempt: a1 / b1 = a2 / b2 * q + r
- * => b2 * a1 = a2 * b1 * q + b1 * b2 * r
- * => (b2 * a1 % a2 * b1) / (b1 * b2)
- */
- return new Fraction(
- (this["s"] * P["d"] * this["n"]) % (P["n"] * this["d"]),
- P["d"] * this["d"]
- );
- },
-
- /**
- * Calculates the fractional gcd of two rational numbers
- *
- * Ex: new Fraction(5,8).gcd(3,7) => 1/56
- */
- "gcd": function(a, b) {
-
- parse(a, b);
-
- // gcd(a / b, c / d) = gcd(a, c) / lcm(b, d)
-
- return new Fraction(gcd(P["n"], this["n"]), P["d"] * this["d"] / gcd(P["d"], this["d"]));
- },
-
- /**
- * Calculates the fractional lcm of two rational numbers
- *
- * Ex: new Fraction(5,8).lcm(3,7) => 15
- */
- "lcm": function(a, b) {
-
- parse(a, b);
-
- // lcm(a / b, c / d) = lcm(a, c) / gcd(b, d)
-
- if (P["n"] === 0 && this["n"] === 0) {
- return new Fraction;
- }
- return new Fraction(P["n"] * this["n"] / gcd(P["n"], this["n"]), gcd(P["d"], this["d"]));
- },
-
- /**
- * Calculates the ceil of a rational number
- *
- * Ex: new Fraction('4.(3)').ceil() => (5 / 1)
- **/
- "ceil": function(places) {
-
- places = Math.pow(10, places || 0);
-
- if (isNaN(this["n"]) || isNaN(this["d"])) {
- return new Fraction(NaN);
- }
- return new Fraction(Math.ceil(places * this["s"] * this["n"] / this["d"]), places);
- },
-
- /**
- * Calculates the floor of a rational number
- *
- * Ex: new Fraction('4.(3)').floor() => (4 / 1)
- **/
- "floor": function(places) {
-
- places = Math.pow(10, places || 0);
-
- if (isNaN(this["n"]) || isNaN(this["d"])) {
- return new Fraction(NaN);
- }
- return new Fraction(Math.floor(places * this["s"] * this["n"] / this["d"]), places);
- },
-
- /**
- * Rounds a rational numbers
- *
- * Ex: new Fraction('4.(3)').round() => (4 / 1)
- **/
- "round": function(places) {
-
- places = Math.pow(10, places || 0);
-
- if (isNaN(this["n"]) || isNaN(this["d"])) {
- return new Fraction(NaN);
- }
- return new Fraction(Math.round(places * this["s"] * this["n"] / this["d"]), places);
- },
-
- /**
- * Gets the inverse of the fraction, means numerator and denumerator are exchanged
- *
- * Ex: new Fraction([-3, 4]).inverse() => -4 / 3
- **/
- "inverse": function() {
-
- return new Fraction(this["s"] * this["d"], this["n"]);
- },
-
- /**
- * Calculates the fraction to some integer exponent
- *
- * Ex: new Fraction(-1,2).pow(-3) => -8
- */
- "pow": function(m) {
-
- if (m < 0) {
- return new Fraction(Math.pow(this['s'] * this["d"],-m), Math.pow(this["n"],-m));
- } else {
- return new Fraction(Math.pow(this['s'] * this["n"], m), Math.pow(this["d"], m));
- }
- },
-
- /**
- * Check if two rational numbers are the same
- *
- * Ex: new Fraction(19.6).equals([98, 5]);
- **/
- "equals": function(a, b) {
-
- parse(a, b);
- return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0
- },
-
- /**
- * Check if two rational numbers are the same
- *
- * Ex: new Fraction(19.6).equals([98, 5]);
- **/
- "compare": function(a, b) {
-
- parse(a, b);
- var t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]);
- return (0 < t) - (t < 0);
- },
-
- /**
- * Check if two rational numbers are divisible
- *
- * Ex: new Fraction(19.6).divisible(1.5);
- */
- "divisible": function(a, b) {
-
- parse(a, b);
- return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"])));
- },
-
- /**
- * Returns a decimal representation of the fraction
- *
- * Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183
- **/
- 'valueOf': function() {
-
- return this["s"] * this["n"] / this["d"];
- },
-
- /**
- * Returns a string-fraction representation of a Fraction object
- *
- * Ex: new Fraction("1.'3'").toFraction() => "4 1/3"
- **/
- 'toFraction': function(excludeWhole) {
-
- var whole, str = "";
- var n = this["n"];
- var d = this["d"];
- if (this["s"] < 0) {
- str+= '-';
- }
-
- if (d === 1) {
- str+= n;
- } else {
-
- if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
- str+= whole;
- str+= " ";
- n%= d;
- }
-
- str+= n;
- str+= '/';
- str+= d;
- }
- return str;
- },
-
- /**
- * Returns a latex representation of a Fraction object
- *
- * Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}"
- **/
- 'toLatex': function(excludeWhole) {
-
- var whole, str = "";
- var n = this["n"];
- var d = this["d"];
- if (this["s"] < 0) {
- str+= '-';
- }
-
- if (d === 1) {
- str+= n;
- } else {
-
- if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
- str+= whole;
- n%= d;
- }
-
- str+= "\\frac{";
- str+= n;
- str+= '}{';
- str+= d;
- str+= '}';
- }
- return str;
- },
-
- /**
- * Returns an array of continued fraction elements
- *
- * Ex: new Fraction("7/8").toContinued() => [0,1,7]
- */
- 'toContinued': function() {
-
- var t;
- var a = this['n'];
- var b = this['d'];
- var res = [];
-
- do {
- res.push(Math.floor(a / b));
- t = a % b;
- a = b;
- b = t;
- } while (a !== 1);
-
- return res;
- },
-
- /**
- * Creates a string representation of a fraction with all digits
- *
- * Ex: new Fraction("100.'91823'").toString() => "100.(91823)"
- **/
- 'toString': function() {
-
- var g;
- var N = this["n"];
- var D = this["d"];
-
- if (isNaN(N) || isNaN(D)) {
- return "NaN";
- }
-
- if (!Fraction['REDUCE']) {
- g = gcd(N, D);
- N/= g;
- D/= g;
- }
-
- var p = String(N).split(""); // Numerator chars
- var t = 0; // Tmp var
-
- var ret = [~this["s"] ? "" : "-", "", ""]; // Return array, [0] is zero sign, [1] before comma, [2] after
- var zeros = ""; // Collection variable for zeros
-
- var cycLen = cycleLen(N, D); // Cycle length
- var cycOff = cycleStart(N, D, cycLen); // Cycle start
-
- var j = -1;
- var n = 1; // str index
-
- // rough estimate to fill zeros
- var length = 15 + cycLen + cycOff + p.length; // 15 = decimal places when no repitation
-
- for (var i = 0; i < length; i++, t*= 10) {
-
- if (i < p.length) {
- t+= Number(p[i]);
- } else {
- n = 2;
- j++; // Start now => after comma
- }
-
- if (cycLen > 0) { // If we have a repeating part
- if (j === cycOff) {
- ret[n]+= zeros + "(";
- zeros = "";
- } else if (j === cycLen + cycOff) {
- ret[n]+= zeros + ")";
- break;
- }
- }
-
- if (t >= D) {
- ret[n]+= zeros + ((t / D) | 0); // Flush zeros, Add current digit
- zeros = "";
- t = t % D;
- } else if (n > 1) { // Add zeros to the zero buffer
- zeros+= "0";
- } else if (ret[n]) { // If before comma, add zero only if already something was added
- ret[n]+= "0";
- }
- }
-
- // If it's empty, it's a leading zero only
- ret[0]+= ret[1] || "0";
-
- // If there is something after the comma, add the comma sign
- if (ret[2]) {
- return ret[0] + "." + ret[2];
- }
- return ret[0];
- }
- };
-
- if (typeof define === "function" && define["amd"]) {
- define([], function() {
- return Fraction;
- });
- } else if (typeof exports === "object") {
- module["exports"] = Fraction;
- } else {
- root['Fraction'] = Fraction;
- }
-
- })(this);
|