@ -18,10 +18,21 @@ Network motifs are recurring, significant patterns of interconnections in the ne
Recurrence of motif represents it occurs with high frequency. We allow overlapping of motifs.
Recurrence of motif represents it occurs with high frequency. We allow overlapping of motifs.
Significance of a motif means it is more frequent than expected. The key idea here is we say subgraphs that occur in a real network much more often than in a random network have functional significance. Significance can be measured using Z-score which is defined as: \begin{equation} Z_{i} = \frac{N_{i}^{real} - \overline N_{i}^{rand}}{std(N_{i}^{rand})} \end{equation} <br>
Significance of a motif means it is more frequent than expected. The key idea here is we say subgraphs that occur in a real network much more often than in a random network have functional significance. Significance can be measured using Z-score which is defined as:
where $$N_{i}^{real}$$ is #(subgraphs of type i) in network $$G^{real}$$ and $$N_{i}^{rand}$$ is #(subgraphs of type i) in randomized network $$G^{rand}$$.
where $$N_{i}^{real}$$ is #(subgraphs of type i) in network $$G^{real}$$ and $$N_{i}^{rand}$$ is #(subgraphs of type i) in randomized network $$G^{rand}$$.
Network significance profile (SP) is defined as: \begin{equation} SP_{i} = \frac{Z_{i}}{\sqrt{\sum_{j} {Z_j^{2}}}} \end{equation} where SP is a vector of normalized Z-scores.