Browse Source

Merge pull request #3 from microLizzy/updateLatex

update latex in markdown
master
Manan Shah 5 years ago
committed by GitHub
parent
commit
5bdcf7f6cb
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 17 additions and 6 deletions
  1. +17
    -6
      preliminaries/motifs-and-structral-roles_lecture.md

+ 17
- 6
preliminaries/motifs-and-structral-roles_lecture.md View File

@ -18,21 +18,32 @@ Network motifs are recurring, significant patterns of interconnections in the ne
Recurrence of motif represents it occurs with high frequency. We allow overlapping of motifs.
Significance of a motif means it is more frequent than expected. The key idea here is we say subgraphs that occur in a real network much more often than in a random network have functional significance. Significance can be measured using Z-score which is defined as: \begin{equation} Z_{i} = \frac{N_{i}^{real} - \overline N_{i}^{rand}}{std(N_{i}^{rand})} \end{equation} <br>
where $N_{i}^{real}$ is #(subgraphs of type i) in network $G^{real}$ and $N_{i}^{rand}$ is #(subgraphs of type i) in randomized network $G^{rand}$.
Significance of a motif means it is more frequent than expected. The key idea here is we say subgraphs that occur in a real network much more often than in a random network have functional significance. Significance can be measured using Z-score which is defined as:
Network significance profile (SP) is defined as: \begin{equation} SP_{i} = \frac{Z_{i}}{\sqrt{\sum_{j} {Z_j^{2}}}} \end{equation} where SP is a vector of normalized Z-scores.
$$
Z_{i} = \frac{N_{i}^{real} - \overline N_{i}^{rand}}{std(N_{i}^{rand})}
$$
where $$N_{i}^{real}$$ is #(subgraphs of type i) in network $$G^{real}$$ and $$N_{i}^{rand}$$ is #(subgraphs of type i) in randomized network $$G^{rand}$$.
Network significance profile (SP) is defined as:
$$
SP_{i} = \frac{Z_{i}}{\sqrt{\sum_{j} {Z_j^{2}}}}
$$
where SP is a vector of normalized Z-scores.
### Configuration Model
Configuration model is a random graph with a given degree sequence $k_1$, $k_2$, ..., $k_N$ which can be used as a "null" model and then compared with real network. Configuration model can be generated in an easy way as shown in Figure 2.
Configuration model is a random graph with a given degree sequence $$k_1$$, $$k_2$$, ..., $$k_N$$ which can be used as a "null" model and then compared with real network. Configuration model can be generated in an easy way as shown in Figure 2.
![Figure 2](../assets/img/Configuration_Model.png?style=centerme)
Another way for generation is as following:
1) start from a given graph G;
2) select a pair of edges A->B, C->D at random, exchange the endpoints to give A->D, C->B, repeat the switching step Q* $\vert$ E $\vert$ times.
2) select a pair of edges A->B, C->D at random, exchange the endpoints to give A->D, C->B, repeat the switching step Q* $$\vert E\vert$$ times.
By this way, we will get a randomly rewired graph with same node degrees and randomly rewired edges.
@ -49,7 +60,7 @@ Finding size-k motifs/graphlets requires us:
Just knowing if a certain subgraph exists in a graph is a hard computational problem. Also, computation time grows exponentially as the size of the motif/graphlet increases.
### ESU Algorithm
Exact Subgraph Enumeration (ESU) Algorithm involves two sets, while $V_{subgraph}$ contains nodes in currently constructed subgraph, and $V_{extension}$ is a set of candidate nodes to extend the motif. The basic idea of ESU is firstly starting with a node v, then adding nodes u to $V_{extension}$ set when u's node id is larger than that of v, and u may only be neighbored to some newly added node w but not of any node already in $V_{subgraph}$.
Exact Subgraph Enumeration (ESU) Algorithm involves two sets, while $$V_{subgraph}$$ contains nodes in currently constructed subgraph, and $$V_{extension}$$ is a set of candidate nodes to extend the motif. The basic idea of ESU is firstly starting with a node v, then adding nodes u to $$V_{extension}$$ set when u's node id is larger than that of v, and u may only be neighbored to some newly added node w but not of any node already in $$V_{subgraph}$$.
ESU is implemented as a recursive function, Figure 3 shows the pseudocode of this algorithm:
![Figure 3](../assets/img/Exact_Subgraph_Enumeration.png?style=centerme)

Loading…
Cancel
Save