@PREAMBLE{ "\providecommand{\noopsort}[1]{}" # "\providecommand{\singleletter}[1]{#1}%" } @misc{goodfellow2014generative, title={Generative Adversarial Networks}, author={Ian J. Goodfellow and Jean Pouget-Abadie and Mehdi Mirza and Bing Xu and David Warde-Farley and Sherjil Ozair and Aaron Courville and Yoshua Bengio}, year={2014}, eprint={1406.2661}, archivePrefix={arXiv}, primaryClass={stat.ML} } @misc{arjovsky2017wasserstein, title={Wasserstein GAN}, author={Martin Arjovsky and Soumith Chintala and Léon Bottou}, year={2017}, eprint={1701.07875}, archivePrefix={arXiv}, primaryClass={stat.ML} } @misc{radford2015unsupervised, title={Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks}, author={Alec Radford and Luke Metz and Soumith Chintala}, year={2015}, eprint={1511.06434}, archivePrefix={arXiv}, primaryClass={cs.LG} } @article{widrow1962generalization, title={Generalization and Information Storage in Networks of ADALINE Neurons. Self Organizing Systems}, author={Widrow, Bernard}, journal={Yovitz, MC, Jacobi, GT, and Goldstein, GD editors}, pages={435--461}, year={1962} } @ARTICLE{overviewDocument, author={Z. {Pan} and W. {Yu} and X. {Yi} and A. {Khan} and F. {Yuan} and Y. {Zheng}}, journal={IEEE Access}, title={Recent Progress on Generative Adversarial Networks (GANs): A Survey}, year={2019}, volume={7}, number={}, pages={36322-36333}, keywords={artificial intelligence;neural nets;generative adversarial network;GANs;generative models;data generation capacity;artificial intelligence;Gallium nitride;Generators;Generative adversarial networks;Training;Feature extraction;Data models;Unsupervised learning;Deep learning;machine learning;unsupervised learning;generative adversarial networks}, doi={10.1109/ACCESS.2019.2905015}, ISSN={2169-3536}, month={},} @article{cGAN, author = {Mehdi Mirza and Simon Osindero}, title = {Conditional Generative Adversarial Nets}, journal = {CoRR}, volume = {abs/1411.1784}, year = {2014}, url = {http://arxiv.org/abs/1411.1784}, archivePrefix = {arXiv}, eprint = {1411.1784}, timestamp = {Mon, 13 Aug 2018 16:48:15 +0200}, biburl = {https://dblp.org/rec/journals/corr/MirzaO14.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } @article{lsgan, author = {Xudong Mao and Qing Li and Haoran Xie and Raymond Y. K. Lau and Zhen Wang}, title = {Multi-class Generative Adversarial Networks with the {L2} Loss Function}, journal = {CoRR}, volume = {abs/1611.04076}, year = {2016}, url = {http://arxiv.org/abs/1611.04076}, archivePrefix = {arXiv}, eprint = {1611.04076}, timestamp = {Wed, 13 Nov 2019 15:48:57 +0100}, biburl = {https://dblp.org/rec/journals/corr/MaoLXLW16.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } @inproceedings{acgan, author = {Odena, Augustus and Olah, Christopher and Shlens, Jonathon}, title = {Conditional Image Synthesis with Auxiliary Classifier GANs}, year = {2017}, publisher = {JMLR.org}, booktitle = {Proceedings of the 34th International Conference on Machine Learning - Volume 70}, pages = {2642–2651}, numpages = {10}, location = {Sydney, NSW, Australia}, series = {ICML’17} } @article{infogan, author = {Xi Chen and Yan Duan and Rein Houthooft and John Schulman and Ilya Sutskever and Pieter Abbeel}, title = {InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets}, journal = {CoRR}, volume = {abs/1606.03657}, year = {2016}, url = {http://arxiv.org/abs/1606.03657}, archivePrefix = {arXiv}, eprint = {1606.03657}, timestamp = {Mon, 03 Sep 2018 12:15:29 +0200}, biburl = {https://dblp.org/rec/journals/corr/ChenDHSSA16.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }