
A Comparison of Different GANs for Generating Handwritten Digits on MNIST∗

Jeffery B. Russell†

Fourth Year Computer Science Student at RIT
CUBRC Research Assistant

RITlug President

Ryan Missel‡

Fifth Year Computer Science Student at RIT
CASCI Research Assistant

Kyle Rivenburgh§

Fifth Year Computer Science Student at RIT

(Dated: April 25, 2020)

Generative Adversarial Networks have emerged as a powerful and customizable class of machine
learning algorithms within the past half a decade. They learn the distribution of a dataset to
generate realistic synthetic samples. It is an active field of research with massive improvements
yearly, addressing fundamental limitations of the class and improving on the quality of generated
figures. GANs have been successfully applied to music synthesis, face generation, and text-to-image
translation.

Within this work, we will look at a variety of GAN architectures and how they compare qualita-
tively on the famous MNIST dataset. We will explore how differing architectures affect the time of
convergence, quality of the resulting images, and complexity in training. The theoretical justifica-
tions and shortcomings of each methodology will be explored in detail, such that intuition can be
formed on choosing the right architecture for a problem.

Keywords: Computer Vision, Generative Adversarial Networks, Machine Learning, MNIST

I. BACKGROUND

Neural networks (NN) were first developed by Bernard
Widrow and Marcian Hoff of Stanford in 1959 under
the name of MADALINE (Multiple Adaptive Linear Ele-
ment) [11]. Neural networks were designed with inspira-
tion taken from biological neurons in human brains. Ar-
tificial neurons aggregate information from other neurons
and fire off a signal depending on the strengths of previ-
ous inputs, which is analogous with how human neurons
operate. Neural networks fall into the categorization of
supervised learning in artificial intelligence (AI). Under
supervised learning, the algorithm needs to be fed in la-
beled data to make future classifications/predictions. Su-
pervised juxtaposes unsupervised learning, which needs
no training data – an example of unsupervised learning
would be clustering.

GANs were first proposed by Ian J. Goodfellow in his
Ph.D. dissertation in 2014 at the Université de Montréal
[4]. The proposed architecture is a dual neural network
system, in which a generative model learns to generate
realistic samples from distribution to compete against a
discriminator that classifies fake images. These models
are trained in tandem with one another, both learning

∗ Submitted as a CSCI-431 assignment at RIT
† jeffery@jrtechs.net, jxr8142@rit.edu
‡ rxm7244@rit.edu
§ ktr5669@rit.edu

from random initialization how to best one another. A
successful result of training is when the Nash Equilibrium
between the two models is found. Nash Equilibrium oc-
curs when the generator has learned the distribution of
the data well enough to the point that the discriminator
is only as good as a random chance.

FIG. 1: Architecture of a GAN

Since the advent of GANs in 2014, they have vastly
improved and have blown up in the AI research field.
State of the art research in GANs is currently focusing
on applications in video and voice data.

mailto:jeffery@jrtechs.net, jxr8142@rit.edu
mailto:rxm7244@rit.edu
mailto:ktr5669@rit.edu


2

A. Applications

GANs have been applied to many problems [8].
A sampling of some of the problems are listed below.

• Image Generation

• Music Generation

• Style Transfer

• Video Prediction

• Super Resolution

• Text to Image

B. Deep Convolutional Generative Adversarial
Network

Deep Convolutional Generative Adversarial Networks,
DCGAN for short, is an architectural modification on
the original GAN, in which the generator and discrimi-
nator models are reflections of one another. The makeup
of each network is a multi-layer, deep convolutional neu-
ral network. The idea behind this architecture is that
by reflecting the network structure between the two, the
computational capacities of each network to learn their
respective tasks are equal [10]. In doing this, it should
stabilize competitive learning between the two agents and
result in smoother learning, avoiding cases of one network
dominance.

C. Wasserstein Generative Adversarial Networks

Wasserstein Generative Adversarial Networks, or
WGANs for short, was an improvement on the vanilla
GAN proposed by Martin Arjovsky, et al in 2017 [1].
The motivation behind this work is modifying the task
of the discriminator in order to stabilize the training be-
tween the networks. Instead of having a simple binary
classifier that predicts whether an image is real or fake,
the discriminator is modified to output the likelihood es-
timate of the ”realness” or ”fakeness” of an image. The
theoretical idea is that this continuous estimation incen-
tivizes the generator to minimize the distance between
the distribution of its generated images and the real im-
ages more than the standard discriminator design. Em-
pirically, this design has shown more exceptional results
over the standard GAN architecture in terms of training
and architecture stability, as well as being more robust
to hyper-parameter configurations.

II. GOALS

This project applies three different GAN architec-
tures to generating handwritten images from the MNIST

dataset. We are going to compare: vanilla GANs, DC-
GANs, and WGANs. Using the results of the three dif-
ferent architectures, we wish to judge the performance
based on three performance criteria:

• Perceived Quality of Images

• Time required to train

• Training data required

The Modified National Institute of Standards and
Technology database (MNIST database) is a dataset
comprising of seventy thousand handwritten digits. Sixty
thousand of those images are partitioned for training, and
the remaining ten thousand are left for testing and val-
idation. We are using the MNIST dataset because it is
the de facto standard when it comes to machine learning
on images.

A. Research Questions

• Which GAN architecture performs best on the
MNIST dataset?

• What are the quantitative differences between
these architectures in terms of stability of training,
and quality of the results?

• How does required training time and convergence
rate differ between GAN architectures?

III. IMPLEMENTATION

We implemented each GAN variety using PyTorch.
PyTorch is an open-source machine learning framework.
This framework was used due to its popularity in the
field and ease of use[9]. Our python implementation can
be found on Github in a repository created for this class
titled ”jrtechs/CSCI-431-final-GANS”1.

A. Vanilla Generative Adversarial Network

Using boilerplate PyTorch code, we implemented an
underlying GAN that uses a generator and discrimina-
tor using simple neural networks. We used a Binary
Cross-Entropy (BCE) Loss function for the adversarial
algorithm [3]. The arching idea of a basic GAN can be
observed in figure 1.

1 https://github.com/jrtechs/CSCI-431-final-GANs

https://github.com/jrtechs/CSCI-431-final-GANs


3

B. Deep Generative Adversarial Network

The code to run the DCGAN is identical to the code
required to run the regular GAN. The critical difference
is that we use different types of neural networks in both
implementations. In the GAN, we just used a standard
neural network, but in the DCGAN, we used convolu-
tional neural networks where the generator mirrored the
discriminator.

C. Wasserstein Generative Adversarial Network

The WGAN implementation was nearly identical to
the typical GAN implementation, but, the loss function
was changed to be the Wasserstein distance. The key
benefit of this is that the loss functions that we are trying
to optimize now correlate to image quality.

IV. EXPERIMENTS

This section goes over in-depth the experiments ran in
this project and the results produced from them.

A. Data Set

The MNIST database of handwritten digits was used
to test the GAN algorithms. The MNIST dataset com-
prises of seventy thousand handwritten digits already
partitioned into a training and test set. The Training
set contains sixty thousand images, and ten thousand
images are in the test set. This dataset was collected by
using approximately 250 writers. Note: the writers in
the training and test sets were disjoint from each other.

The MNIST dataset was selected because it is widely
used in the field of computer vision and AI. Its popularity
makes it an ideal dataset because we can compare our
results with the work of other people. Since it is a large
set that was used in previous papers, we also know that
we could get a really good confidence score if we were
solely creating a classifier. However, in this project, we
will be generating a discriminator and generator on the
most set. Never-less, the dataset has proven by other
researchers to be sufficient for use in neural networks.
MNIST is ideal to use because images are of a fixed size
of 20x20, and images have already been normalized.

The data we used was downloaded from Yann LeCun’s
website 2.

2 http://yann.lecun.com/exdb/mnist/

TABLE I: This table represents the quality metrics we
measured from a random participant.

GAN WGAN DCGAN
7 7 10
6 8 10
7 7 10
6 7 10
5 7 10
4 8 10

B. Quality

In this experiment, we aimed to test the quality of the
images produced. In this test, we had the GANS gen-
erate handwritten digits. After scrambling which GAN
produced, which image, we asked a test participant to
rank each image on a scale of 1-10 on how it looks. Ten
would indicate that it looked like a human drew this digit,
and a one would indicate that the image looks terrible.
After all the data was collected, we compared which GAN
architecture had the best-perceived quality from the par-
ticipant.

After running all three architectures for 200 epochs,
the training metrics indicated that they all were hitting
max performance and that more training would be not
much more beneficial. We took the last ten sample out-
puts from each GAN architecture and asked a random
participant to rate the handwritten digits on a scale of
1-10; the results are shown in table I. As you can see,
the DGGAN outperforms the other two architectures by
a large margin.

C. Training

In this experiment, we cut off each GAN after a specif
amount of Epochs. We compared the results of the three
GAN architectures after a different amount of batches.
Note: Each batch contains 64 images. An epoch is when
the algorithm has seen all the data in the set. With the
MNIST data set, it takes 938 batches to get through all
the training data. We sampled after 400 batches, 6000
batches and 187200 batches –200 Epochs. We did 200
epochs because we wanted to see what the algorithm
would look like at its best, and we did 400 and 6000
to capture how fast the algorithm learned.

Looking at figure 3, we see that the normal GAN took
some time to train and that it looked pretty bad at 400
and 6000 batches but started to look pretty good at 200
epochs.

Looking at figure 4, we can see that the results from
400 and 6000 batches were pretty bad but, the results
after 200 epochs look remarkably good.

Looking at figure 5, we notice that training hap-
pened remarkably fast. Compared to figure 4 and fig-
ure 3, we can observe that the results after 6000 batches

http://yann.lecun.com/exdb/mnist/


4

FIG. 2: Output with no training data

looked better than the other two algorithms did after 200
epochs– 187200 batches. The results of the DCGAN after
200 epochs look remarkable and would quickly be passed
as human written handwritten digits.

D. Quantity of Training Data

In this experiment, we compare how the GAN algo-
rithms run at different levels of training data from the
MNIST set. We compare the GANS using the full train-
ing set, and one-sixth of the training data.

The full dataset contained roughly sixty thousand im-
ages and took 187200 batches of 64 images to run 200
epochs. The reduced dataset contained ten thousand
images and took 31200 batches of 64 images to run 200
epochs.

Figures 3 through 5 show the results of using all the
data in the MNIST dataset on 200 epochs. Figure 6

shows the result of the three algorithms at 200 epochs on
the data set reduced to one-sixth of the original size. De-
spite reducing the amount of training data, the DCGAN
still performed incredibly well; however, the two other
algorithms took a major performance hit.

V. CONCLUSIONS

This project is a useful survey and comparison of three
popular GAN architectures. Based on the results, we
can conclude that DCGANs make great improvements
in terms of what it can do with limited training data and
the number of iterations required. DCGANs were also
proven to give really crip results.

Future work for this project would entail research-
ing more GAN architectures like Conditional GANS
(CGANS), Least Square GANs (LSGAN), Auxiliary
Classifier GAN (ACGAN), and Info GANS (infoGAN)
[2, 5–7],. Another avenue of research would be to exam-
ine how the results of our experiments on the MNIST
dataset hold up against different datasets.

Since this is such a new algorithm in the field of Ar-
tificial intelligence, people are still actively doing a ton
of research in GANs, pushing them at the forefront of
cutting edge. As GANs become more widely used in the
public and private sectors, we are sure to see a lot more
research into the applications of GANs.

VI. ACKNOWLEDGMENT

This was submitted as a RIT CSCI-431 project for pro-
fessor Sorkunlu’s class. Latex files used to generate this
report can be found on a Github page created specifically
for this project 3.

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
2017. Wasserstein GAN. arXiv:stat.ML/1701.07875

[2] Xi Chen, Yan Duan, Rein Houthooft, John Schul-
man, Ilya Sutskever, and Pieter Abbeel. 2016. Info-
GAN: Interpretable Representation Learning by Infor-
mation Maximizing Generative Adversarial Nets. CoRR
abs/1606.03657 (2016). arXiv:1606.03657 http://

arxiv.org/abs/1606.03657

[3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press. http://www.

deeplearningbook.org.
[4] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,

Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative Adver-
sarial Networks. arXiv:stat.ML/1406.2661

3 https://github.com/jrtechs/computer-vision-GANs-paper

[5] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K.
Lau, and Zhen Wang. 2016. Multi-class Generative Ad-
versarial Networks with the L2 Loss Function. CoRR
abs/1611.04076 (2016). arXiv:1611.04076 http://

arxiv.org/abs/1611.04076

[6] Mehdi Mirza and Simon Osindero. 2014. Conditional
Generative Adversarial Nets. CoRR abs/1411.1784
(2014). arXiv:1411.1784 http://arxiv.org/abs/1411.

1784

[7] Augustus Odena, Christopher Olah, and Jonathon
Shlens. 2017. Conditional Image Synthesis with Auxil-
iary Classifier GANs. In Proceedings of the 34th Inter-
national Conference on Machine Learning - Volume 70
(ICML’17). JMLR.org, 2642–2651.

[8] Z. Pan, W. Yu, X. Yi, A. Khan, F. Yuan, and Y.
Zheng. 2019. Recent Progress on Generative Adver-
sarial Networks (GANs): A Survey. IEEE Access
7 (2019), 36322–36333. https://doi.org/10.1109/

ACCESS.2019.2905015

http://arxiv.org/abs/1606.03657
http://arxiv.org/abs/1606.03657
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/jrtechs/computer-vision-GANs-paper
http://arxiv.org/abs/1611.04076
http://arxiv.org/abs/1611.04076
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
https://doi.org/10.1109/ACCESS.2019.2905015
https://doi.org/10.1109/ACCESS.2019.2905015


5

(a) 400 Batches (b) 6000 Batches (c) 187200 Batches

FIG. 3: GAN Results Sampled at Different Epochs

(a) 400 Batches (b) 6000 Batches (c) 187200 Batches

FIG. 4: WGAN Results Sampled at Different Epochs

(a) 400 Batches (b) 6000 Batches (c) 187200 Batches

FIG. 5: DCGAN Results Sampled at Different Epochs



6

[9] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. 2017.
Automatic differentiation in PyTorch. (2017).

[10] Alec Radford, Luke Metz, and Soumith Chintala.
2015. Unsupervised Representation Learning with

Deep Convolutional Generative Adversarial Networks.
arXiv:cs.LG/1511.06434

[11] Bernard Widrow. 1962. Generalization and Information
Storage in Networks of ADALINE Neurons. Self Orga-
nizing Systems. Yovitz, MC, Jacobi, GT, and Goldstein,
GD editors (1962), 435–461.



7

(a) GAN (b) WGAN (c) DCGAN

FIG. 6: Results with one Sixth of Training Set and trained for 200 Epochs


	A Comparison of Different GANs for Generating Handwritten Digits on MNIST
	Abstract
	Background
	Applications
	Deep Convolutional Generative Adversarial Network
	Wasserstein Generative Adversarial Networks

	Goals
	Research Questions

	Implementation
	Vanilla Generative Adversarial Network
	Deep Generative Adversarial Network
	Wasserstein Generative Adversarial Network

	Experiments
	Data Set
	Quality
	Training
	Quantity of Training Data

	Conclusions
	Acknowledgment
	References


