not really known
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

54 lines
1.9 KiB

  1. @PREAMBLE{
  2. "\providecommand{\noopsort}[1]{}"
  3. # "\providecommand{\singleletter}[1]{#1}%"
  4. }
  5. @misc{goodfellow2014generative,
  6. title={Generative Adversarial Networks},
  7. author={Ian J. Goodfellow and Jean Pouget-Abadie and Mehdi Mirza and Bing Xu and David Warde-Farley and Sherjil Ozair and Aaron Courville and Yoshua Bengio},
  8. year={2014},
  9. eprint={1406.2661},
  10. archivePrefix={arXiv},
  11. primaryClass={stat.ML}
  12. }
  13. @misc{arjovsky2017wasserstein,
  14. title={Wasserstein GAN},
  15. author={Martin Arjovsky and Soumith Chintala and Léon Bottou},
  16. year={2017},
  17. eprint={1701.07875},
  18. archivePrefix={arXiv},
  19. primaryClass={stat.ML}
  20. }
  21. @misc{radford2015unsupervised,
  22. title={Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks},
  23. author={Alec Radford and Luke Metz and Soumith Chintala},
  24. year={2015},
  25. eprint={1511.06434},
  26. archivePrefix={arXiv},
  27. primaryClass={cs.LG}
  28. }
  29. @article{widrow1962generalization,
  30. title={Generalization and Information Storage in Networks of ADALINE Neurons. Self Organizing Systems},
  31. author={Widrow, Bernard},
  32. journal={Yovitz, MC, Jacobi, GT, and Goldstein, GD editors},
  33. pages={435--461},
  34. year={1962}
  35. }
  36. @ARTICLE{overviewDocument,
  37. author={Z. {Pan} and W. {Yu} and X. {Yi} and A. {Khan} and F. {Yuan} and Y. {Zheng}},
  38. journal={IEEE Access},
  39. title={Recent Progress on Generative Adversarial Networks (GANs): A Survey},
  40. year={2019},
  41. volume={7},
  42. number={},
  43. pages={36322-36333},
  44. keywords={artificial intelligence;neural nets;generative adversarial network;GANs;generative models;data generation capacity;artificial intelligence;Gallium nitride;Generators;Generative adversarial networks;Training;Feature extraction;Data models;Unsupervised learning;Deep learning;machine learning;unsupervised learning;generative adversarial networks},
  45. doi={10.1109/ACCESS.2019.2905015},
  46. ISSN={2169-3536},
  47. month={},}