not really known
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

134 lines
4.6 KiB

  1. @PREAMBLE{
  2. "\providecommand{\noopsort}[1]{}"
  3. # "\providecommand{\singleletter}[1]{#1}%"
  4. }
  5. @misc{goodfellow2014generative,
  6. title={Generative Adversarial Networks},
  7. author={Ian J. Goodfellow and Jean Pouget-Abadie and Mehdi Mirza and Bing Xu and David Warde-Farley and Sherjil Ozair and Aaron Courville and Yoshua Bengio},
  8. year={2014},
  9. eprint={1406.2661},
  10. archivePrefix={arXiv},
  11. primaryClass={stat.ML}
  12. }
  13. @misc{arjovsky2017wasserstein,
  14. title={Wasserstein GAN},
  15. author={Martin Arjovsky and Soumith Chintala and Léon Bottou},
  16. year={2017},
  17. eprint={1701.07875},
  18. archivePrefix={arXiv},
  19. primaryClass={stat.ML}
  20. }
  21. @misc{radford2015unsupervised,
  22. title={Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks},
  23. author={Alec Radford and Luke Metz and Soumith Chintala},
  24. year={2015},
  25. eprint={1511.06434},
  26. archivePrefix={arXiv},
  27. primaryClass={cs.LG}
  28. }
  29. @article{widrow1962generalization,
  30. title={Generalization and Information Storage in Networks of ADALINE Neurons. Self Organizing Systems},
  31. author={Widrow, Bernard},
  32. journal={Yovitz, MC, Jacobi, GT, and Goldstein, GD editors},
  33. pages={435--461},
  34. year={1962}
  35. }
  36. @ARTICLE{overviewDocument,
  37. author={Z. {Pan} and W. {Yu} and X. {Yi} and A. {Khan} and F. {Yuan} and Y. {Zheng}},
  38. journal={IEEE Access},
  39. title={Recent Progress on Generative Adversarial Networks (GANs): A Survey},
  40. year={2019},
  41. volume={7},
  42. number={},
  43. pages={36322-36333},
  44. keywords={artificial intelligence;neural nets;generative adversarial network;GANs;generative models;data generation capacity;artificial intelligence;Gallium nitride;Generators;Generative adversarial networks;Training;Feature extraction;Data models;Unsupervised learning;Deep learning;machine learning;unsupervised learning;generative adversarial networks},
  45. doi={10.1109/ACCESS.2019.2905015},
  46. ISSN={2169-3536},
  47. month={},}
  48. @article{cGAN,
  49. author = {Mehdi Mirza and
  50. Simon Osindero},
  51. title = {Conditional Generative Adversarial Nets},
  52. journal = {CoRR},
  53. volume = {abs/1411.1784},
  54. year = {2014},
  55. url = {http://arxiv.org/abs/1411.1784},
  56. archivePrefix = {arXiv},
  57. eprint = {1411.1784},
  58. timestamp = {Mon, 13 Aug 2018 16:48:15 +0200},
  59. biburl = {https://dblp.org/rec/journals/corr/MirzaO14.bib},
  60. bibsource = {dblp computer science bibliography, https://dblp.org}
  61. }
  62. @article{lsgan,
  63. author = {Xudong Mao and
  64. Qing Li and
  65. Haoran Xie and
  66. Raymond Y. K. Lau and
  67. Zhen Wang},
  68. title = {Multi-class Generative Adversarial Networks with the {L2} Loss Function},
  69. journal = {CoRR},
  70. volume = {abs/1611.04076},
  71. year = {2016},
  72. url = {http://arxiv.org/abs/1611.04076},
  73. archivePrefix = {arXiv},
  74. eprint = {1611.04076},
  75. timestamp = {Wed, 13 Nov 2019 15:48:57 +0100},
  76. biburl = {https://dblp.org/rec/journals/corr/MaoLXLW16.bib},
  77. bibsource = {dblp computer science bibliography, https://dblp.org}
  78. }
  79. @inproceedings{acgan,
  80. author = {Odena, Augustus and Olah, Christopher and Shlens, Jonathon},
  81. title = {Conditional Image Synthesis with Auxiliary Classifier GANs},
  82. year = {2017},
  83. publisher = {JMLR.org},
  84. booktitle = {Proceedings of the 34th International Conference on Machine Learning - Volume 70},
  85. pages = {2642–2651},
  86. numpages = {10},
  87. location = {Sydney, NSW, Australia},
  88. series = {ICML’17}
  89. }
  90. @article{infogan,
  91. author = {Xi Chen and
  92. Yan Duan and
  93. Rein Houthooft and
  94. John Schulman and
  95. Ilya Sutskever and
  96. Pieter Abbeel},
  97. title = {InfoGAN: Interpretable Representation Learning by Information Maximizing
  98. Generative Adversarial Nets},
  99. journal = {CoRR},
  100. volume = {abs/1606.03657},
  101. year = {2016},
  102. url = {http://arxiv.org/abs/1606.03657},
  103. archivePrefix = {arXiv},
  104. eprint = {1606.03657},
  105. timestamp = {Mon, 03 Sep 2018 12:15:29 +0200},
  106. biburl = {https://dblp.org/rec/journals/corr/ChenDHSSA16.bib},
  107. bibsource = {dblp computer science bibliography, https://dblp.org}
  108. }
  109. @article{pytorch,
  110. title={Automatic differentiation in PyTorch},
  111. author={Paszke, Adam and Gross, Sam and Chintala, Soumith and Chanan, Gregory and Yang, Edward and DeVito, Zachary and Lin, Zeming and Desmaison, Alban and Antiga, Luca and Lerer, Adam},
  112. year={2017}
  113. }
  114. @book{generalDeepLearning,
  115. title={Deep Learning},
  116. author={Ian Goodfellow and Yoshua Bengio and Aaron Courville},
  117. publisher={MIT Press},
  118. note={\url{http://www.deeplearningbook.org}},
  119. year={2016}
  120. }