import clean_text
|
|
|
|
# import all our functions
|
|
from clean_text import *
|
|
|
|
#!pylint cleantext
|
|
|
|
import pandas as pd
|
|
from sklearn.feature_extraction.text import CountVectorizer
|
|
|
|
training = [
|
|
" I am master of all",
|
|
"I am a absolute learner"
|
|
]
|
|
|
|
generalization = [
|
|
"I am absolute learner learner"
|
|
]
|
|
|
|
vectorization = CountVectorizer(
|
|
stop_words = "english",
|
|
preprocessor = process.master_clean_text)
|
|
|
|
vectorization.fit(training)
|
|
|
|
build_vocab = {
|
|
value:key
|
|
for key , value in vectorization.vocabulary_.items()
|
|
}
|
|
|
|
vocab = [build_vocab[i] for i in range(len(build_vocab))]
|
|
|
|
extracted = pd.DataFrame(
|
|
data = vectorization.transform(generalization).toarray(),
|
|
index=["generalization"],
|
|
columns=vocab
|
|
)
|
|
|
|
print(extracted)
|