import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
# CNN architecture definition
|
|
class Net(nn.Module):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
# convolutional layer
|
|
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
|
|
# max pooling layer
|
|
self.pool = nn.MaxPool2d(2, 2)
|
|
|
|
def forward(self, x):
|
|
# add sequence of convolutional and max pooling layers
|
|
x = self.pool(F.relu(self.conv1(x)))
|
|
return x
|