{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import gensim\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"model = gensim.models.KeyedVectors.load_word2vec_format('./GoogleNews-vectors-negative300.bin', binary=True) "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[('hi', 0.654898464679718),\n",
|
|
" ('goodbye', 0.639905571937561),\n",
|
|
" ('howdy', 0.6310957074165344),\n",
|
|
" ('goodnight', 0.5920578241348267),\n",
|
|
" ('greeting', 0.5855878591537476),\n",
|
|
" ('Hello', 0.5842196941375732),\n",
|
|
" (\"g'day\", 0.5754077434539795),\n",
|
|
" ('See_ya', 0.5688871145248413),\n",
|
|
" ('ya_doin', 0.5643119812011719),\n",
|
|
" ('greet', 0.5636603832244873)]"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"model.most_similar(\"hello\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[('coders', 0.6104331612586975),\n",
|
|
" ('coder', 0.6063331365585327),\n",
|
|
" ('Coding', 0.5804804563522339),\n",
|
|
" ('formatting', 0.5671651363372803),\n",
|
|
" ('soluble_receptors', 0.5576372146606445),\n",
|
|
" ('ICD9', 0.5571348667144775),\n",
|
|
" ('refactoring', 0.5495434999465942),\n",
|
|
" ('database_schemas', 0.5372464656829834),\n",
|
|
" ('recode', 0.534299373626709),\n",
|
|
" ('XHTML_CSS', 0.5328801870346069)]"
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"model.most_similar(\"coding\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[('cats', 0.8099379539489746),\n",
|
|
" ('dog', 0.7609456777572632),\n",
|
|
" ('kitten', 0.7464985251426697),\n",
|
|
" ('feline', 0.7326233983039856),\n",
|
|
" ('beagle', 0.7150583267211914),\n",
|
|
" ('puppy', 0.7075453996658325),\n",
|
|
" ('pup', 0.6934291124343872),\n",
|
|
" ('pet', 0.6891531348228455),\n",
|
|
" ('felines', 0.6755931377410889),\n",
|
|
" ('chihuahua', 0.6709762215614319)]"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"model.most_similar(\"cat\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"hi globe \n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"def transformSentence(sentence):\n",
|
|
" outputSentence = \"\"\n",
|
|
" \n",
|
|
" for word in sentence.split(\" \"):\n",
|
|
" try:\n",
|
|
" outputSentence += model.most_similar(word)[0][0] + \" \"\n",
|
|
" except Exception:\n",
|
|
" outputSentence += word + \" \"\n",
|
|
" return outputSentence\n",
|
|
"\n",
|
|
"print(transformSentence(\"hello world\"))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"looks Mom No hand \n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(transformSentence(\"look mom no hands\"))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 17,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"This gen_eral concept of Clustering was to groups Data wtih similiar trait \n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(transformSentence(\"The general idea of clustering is to group data with similar traits\"))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 52,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"This manager concept of clusters was to groups datasets wtih similiar traits. \n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"def removeFromString(string, chars):\n",
|
|
" for c in chars:\n",
|
|
" string = string.replace(c, \"\")\n",
|
|
" return string\n",
|
|
"\n",
|
|
"\n",
|
|
"def transformSentenceWithHeuristic(sentence):\n",
|
|
" outputSentence = \"\"\n",
|
|
" \n",
|
|
" for word in sentence.split(\" \"):\n",
|
|
" try:\n",
|
|
" changed = False\n",
|
|
" for w, _ in model.most_similar(word):\n",
|
|
" clean = removeFromString(w, [' ', '_']).lower()\n",
|
|
" if clean not in word.lower() and \"_\" not in w:\n",
|
|
" outputSentence += w + \" \"\n",
|
|
" changed = True\n",
|
|
" break\n",
|
|
" outputSentence = outputSentence if changed else outputSentence + word + \" \"\n",
|
|
" except Exception:\n",
|
|
" outputSentence += word + \" \"\n",
|
|
" return outputSentence\n",
|
|
"print(transformSentenceWithHeuristic(\"The general idea of clustering is to group data with similar traits.\"))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 53,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Relax up and grabbing a drinks but that was day it I talking abut this hallucinogenic trips it was this 1981 film Fever Treatment. \n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(transformSentenceWithHeuristic(\"Sit down and grab a drink because it is time that we talk about the LSD trip that is the 1981 movie Shock Treatment.\"))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 54,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from sklearn.decomposition import IncrementalPCA # inital reduction\n",
|
|
"from sklearn.manifold import TSNE # final reduction\n",
|
|
"import numpy as np # array handling\n",
|
|
"\n",
|
|
"\n",
|
|
"def reduce_dimensions(model):\n",
|
|
" num_dimensions = 2 # final num dimensions (2D, 3D, etc)\n",
|
|
"\n",
|
|
" vectors = [] # positions in vector space\n",
|
|
" labels = [] # keep track of words to label our data again later\n",
|
|
" for word in model.wv.vocab:\n",
|
|
" vectors.append(model.wv[word])\n",
|
|
" labels.append(word)\n",
|
|
"\n",
|
|
" # convert both lists into numpy vectors for reduction\n",
|
|
" vectors = np.asarray(vectors)\n",
|
|
" labels = np.asarray(labels)\n",
|
|
"\n",
|
|
" # reduce using t-SNE\n",
|
|
" vectors = np.asarray(vectors)\n",
|
|
" tsne = TSNE(n_components=num_dimensions, random_state=0)\n",
|
|
" vectors = tsne.fit_transform(vectors)\n",
|
|
"\n",
|
|
" x_vals = [v[0] for v in vectors]\n",
|
|
" y_vals = [v[1] for v in vectors]\n",
|
|
" return x_vals, y_vals, labels\n",
|
|
"\n",
|
|
"\n",
|
|
"#x_vals, y_vals, labels = reduce_dimensions(model)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|