import torch.nn as nn
							 | 
						|
								import torch.nn.functional as F
							 | 
						|
								
							 | 
						|
								# CNN architecture definition
							 | 
						|
								class Net(nn.Module):
							 | 
						|
								    def __init__(self):
							 | 
						|
								        super(Net, self).__init__()
							 | 
						|
								        # convolutional layer
							 | 
						|
								        self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
							 | 
						|
								        # max pooling layer
							 | 
						|
								        self.pool = nn.MaxPool2d(2, 2)
							 | 
						|
								
							 | 
						|
								    def forward(self, x):
							 | 
						|
								        # add sequence of convolutional and max pooling layers
							 | 
						|
								        x = self.pool(F.relu(self.conv1(x)))
							 | 
						|
								        return x
							 |