Browse Source

Perceptron algorithm

pull/18/head
olalekanteeblaze 5 years ago
parent
commit
d83ce3ae5b
1 changed files with 65 additions and 0 deletions
  1. +65
    -0
      perceptron/perceptron.py

+ 65
- 0
perceptron/perceptron.py View File

@ -0,0 +1,65 @@
import numpy as np
class Perceptron(object):
"""
Perceptron classifier
___________________
parameters
__________________
eta: float
learning rate betweeen 0.0 and 1.0
n_iter: int
Passes over the training dataset
___________________
Attributes
___________________
w_: 1d array
weights after training
errors_: list
Number of msiclassifications for every epoch
"""
def __init__(self, eta, n_iter):
self.eta = eta
self.n_iter = n_iter
def fit(self, X, y):
"""
Fit training data
______________________
parameters
______________________
X: {array-like}, shape = [n_samples, n_features]
Training vectors where n_samples is the number of samples
and n_features is the number of features
y: array-like, shape = [n_samples]
Target values
____________________
Returns
____________________
self: object
"""
self.w_ = np.zeros(1 + X.shape[1])
self.errors_ = []
for _ in range(self.n_iter):
errors = 0
for xi,target in zip(X, y):
update = self.eta * (target - self.predict(xi))
self.w_[1:] += update * xi
self.w_[0] += update
errors += int(update != 0.0)
self.errors_.append(errors)
return self
def net_input(self, X):
"""
Calculate net input
"""
return np.dot(X, self.w_[1:]) + self.w_[0]
def predict(self, X):
"""
Return class label after unit step
"""
return np.where(self.net_input(X) >= 0.0, 1, -1)

Loading…
Cancel
Save