| @ -0,0 +1,41 @@ | |||||
| import numpy as np | |||||
| class Perceptron(object): | |||||
| """Implements a perceptron network""" | |||||
| def __init__(self, input_size, lr=1, epochs=100): | |||||
| self.W = np.zeros(input_size+1) | |||||
| # add one for bias | |||||
| self.epochs = epochs | |||||
| self.lr = lr | |||||
| #activation function | |||||
| def activation_fn(self, x): | |||||
| #return (x >= 0).astype(np.float32) | |||||
| return 1 if x >= 0 else 0 | |||||
| #we need a prediction function to run an input through the perceptron and return an output. | |||||
| def predict(self, x): | |||||
| z = self.W.T.dot(x) | |||||
| a = self.activation_fn(z) | |||||
| return a | |||||
| def fit(self, X, d): | |||||
| for _ in range(self.epochs): | |||||
| for i in range(d.shape[0]): | |||||
| x = np.insert(X[i], 0, 1) | |||||
| y = self.predict(x) | |||||
| e = d[i] - y | |||||
| self.W = self.W + self.lr * e * x | |||||
| #the easiset set of data that we can provide is the AND gate. Given is set of inputs and outputs. | |||||
| if __name__ == '__main__': | |||||
| X = np.array([ | |||||
| [0, 0], | |||||
| [0, 1], | |||||
| [1, 0], | |||||
| [1, 1] | |||||
| ]) | |||||
| d = np.array([0, 0, 0, 1]) | |||||
| perceptron = Perceptron(input_size=2) | |||||
| perceptron.fit(X, d) | |||||
| print(perceptron.W) | |||||
| @ -0,0 +1,41 @@ | |||||
| import numpy as np | |||||
| class Perceptron(object): | |||||
| """Implements a perceptron network""" | |||||
| def __init__(self, input_size, lr=1, epochs=100): | |||||
| self.W = np.zeros(input_size+1) | |||||
| # add one for bias | |||||
| self.epochs = epochs | |||||
| self.lr = lr | |||||
| #activation function | |||||
| def activation_fn(self, x): | |||||
| #return (x >= 0).astype(np.float32) | |||||
| return 1 if x >= 0 else 0 | |||||
| #we need a prediction function to run an input through the perceptron and return an output. | |||||
| def predict(self, x): | |||||
| z = self.W.T.dot(x) | |||||
| a = self.activation_fn(z) | |||||
| return a | |||||
| def fit(self, X, d): | |||||
| for _ in range(self.epochs): | |||||
| for i in range(d.shape[0]): | |||||
| x = np.insert(X[i], 0, 1) | |||||
| y = self.predict(x) | |||||
| e = d[i] - y | |||||
| self.W = self.W + self.lr * e * x | |||||
| #the easiset set of data that we can provide is the AND gate. Given is set of inputs and outputs. | |||||
| if __name__ == '__main__': | |||||
| X = np.array([ | |||||
| [0, 0], | |||||
| [0, 1], | |||||
| [1, 0], | |||||
| [1, 1] | |||||
| ]) | |||||
| d = np.array([0, 0, 0, 1]) | |||||
| perceptron = Perceptron(input_size=2) | |||||
| perceptron.fit(X, d) | |||||
| print(perceptron.W) | |||||
| @ -0,0 +1,63 @@ | |||||
| # Python3 Program to print BFS traversal | |||||
| from collections import defaultdict | |||||
| # This class represents a directed graph | |||||
| # using adjacency list representation | |||||
| class Graph: | |||||
| # Constructor | |||||
| def __init__(self): | |||||
| # default dictionary to store graph | |||||
| self.graph = defaultdict(list) | |||||
| # function to add an edge to graph | |||||
| def addEdge(self,u,v): | |||||
| self.graph[u].append(v) | |||||
| # Function to print a BFS of graph | |||||
| def BFS(self, s): | |||||
| # Mark all the vertices as not visited | |||||
| visited = [False] * (len(self.graph)) | |||||
| # Create a queue for BFS | |||||
| queue = [] | |||||
| # Mark the source node as | |||||
| # visited and enqueue it | |||||
| queue.append(s) | |||||
| visited[s] = True | |||||
| while queue: | |||||
| # Dequeue a vertex from | |||||
| # queue and print it | |||||
| s = queue.pop(0) | |||||
| print (s, end = " ") | |||||
| # Get all adjacent vertices of the | |||||
| # dequeued vertex s. If a adjacent | |||||
| # has not been visited, then mark it | |||||
| # visited and enqueue it | |||||
| for i in self.graph[s]: | |||||
| if visited[i] == False: | |||||
| queue.append(i) | |||||
| visited[i] = True | |||||
| # Driver code | |||||
| g = Graph() | |||||
| g.addEdge(0, 1) | |||||
| g.addEdge(0, 2) | |||||
| g.addEdge(1, 2) | |||||
| g.addEdge(2, 0) | |||||
| g.addEdge(2, 3) | |||||
| g.addEdge(3, 3) | |||||
| print ("Following is Breadth First Traversal" | |||||
| " (starting from vertex 2)") | |||||
| g.BFS(2) | |||||
| @ -0,0 +1,58 @@ | |||||
| # Python3 program to print DFS traversal | |||||
| from collections import defaultdict | |||||
| # This class represents a directed graph using | |||||
| # adjacency list representation | |||||
| class Graph: | |||||
| # Constructor | |||||
| def __init__(self): | |||||
| # default dictionary to store graph | |||||
| self.graph = defaultdict(list) | |||||
| def addEdge(self, u, v): | |||||
| self.graph[u].append(v) | |||||
| # A function used by DFS | |||||
| def DFSUtil(self, v, visited): | |||||
| # Mark the current node as visited | |||||
| # and print it | |||||
| visited[v] = True | |||||
| print(v, end = ' ') | |||||
| # Recur for all the vertices | |||||
| # adjacent to this vertex | |||||
| for i in self.graph[v]: | |||||
| if visited[i] == False: | |||||
| self.DFSUtil(i, visited) | |||||
| # The function to do DFS traversal. It uses | |||||
| # recursive DFSUtil() | |||||
| def DFS(self, v): | |||||
| # Mark all the vertices as not visited | |||||
| visited = [False] * (len(self.graph)) | |||||
| # Call the recursive helper function | |||||
| # to print DFS traversal | |||||
| self.DFSUtil(v, visited) | |||||
| # Driver code | |||||
| # Create a graph given | |||||
| # in the above diagram | |||||
| g = Graph() | |||||
| g.addEdge(0, 1) | |||||
| g.addEdge(0, 2) | |||||
| g.addEdge(1, 2) | |||||
| g.addEdge(2, 0) | |||||
| g.addEdge(2, 3) | |||||
| g.addEdge(3, 3) | |||||
| print("Following is DFS from (starting from vertex 2)") | |||||
| g.DFS(2) | |||||