|
|
- import torch.nn as nn
- import torch.nn.functional as F
-
- # CNN architecture definition
- class Net(nn.Module):
- def __init__(self):
- super(Net, self).__init__()
- # convolutional layer
- self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
- # max pooling layer
- self.pool = nn.MaxPool2d(2, 2)
-
- def forward(self, x):
- # add sequence of convolutional and max pooling layers
- x = self.pool(F.relu(self.conv1(x)))
- return x
|