Jeffery Russell
9-30-19
Using R markdown you can easily create reports and presentations by embedding your code in the report. This has major advantages.
summary(cars)
speed dist
Min. : 4.0 Min. : 2.00
1st Qu.:12.0 1st Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean : 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max. :25.0 Max. :120.00
plot(mtcars$wt, mtcars$mpg, main="Weight vs MPG", xlab = "weight", ylab="MPG")
x <- 0
if (x < 0)
{
print("Negative number")
} else if (x > 0)
{
print("Positive number")
} else
{
print("Zero")
}
[1] "Zero"
for(i in 1:5)
{
print(i)
}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
for(i in (1:5)*2)
{
print(i)
}
[1] 2
[1] 4
[1] 6
[1] 8
[1] 10
x <- 2
while(x == 2)
{
print("Stonks")
x = x + 1
}
[1] "Stonks"
Arrays are 1 indexed.
for(i in c(1,4,5))
{
print(i)
}
[1] 1
[1] 4
[1] 5
ar <- c(1,3,9)
print(ar[2])
[1] 3
Using the built in help command, you can view documentation for any function.
help(plot)
plot(x=1:10, y=(1:10)^2, xlab = "x", ylab = "y", main="Ez")
ggplot(data = iris) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Iris Flower Set") +
geom_point(mapping = aes(x=Sepal.Length, y=Petal.Length, color = Species)) +
labs(x = "Sepal Length", y = "Petal Length", color="Phase") +
theme_bw()
ggplot(data = iris) + theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Iris Flow Length") +
geom_boxplot(mapping = aes(y=Petal.Length, x = Species), outlier.colour = "red", outlier.shape = 1) +
labs(x = "Flower Type", y = "Petal Length") +
coord_flip() +
theme_bw()
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
partitions <- iris_tbl %>%
sdf_partition(training = 0.7, test = 0.3, seed = 1111)
iris_training <- partitions$training
iris_test <- partitions$test
dt_model <- iris_training %>%
ml_decision_tree(Species ~ .)
pred <- ml_predict(dt_model, iris_test)
ml_multiclass_classification_evaluator(pred)
[1] 0.9451737
Visualize the built in “mpg” data-set from the tidyverse library.
Step 1: Install Tidyverse package in R and include it in your R Script
# Install tidyverse
install.packages("tidyverse")
# Include tidyverse in project
library(tidyverse)
plot(x = mpg$displ, y=mpg$hwy, main="Engine Size(Liters) vs MPG")
ggplot(data = mpg) + geom_point(mapping=aes(x=displ, y = hwy))
ggplot(data = mpg) + geom_point(mapping=aes(x=displ, y = hwy, color=class))
ggplot(data = mpg) + geom_point(mapping=aes(x=displ, y = hwy, shape=class))
ggplot(data = mpg) + geom_point(mapping=aes(x=displ, y = hwy)) + facet_wrap(~ class, nrow=3)
ggplot(data = mpg) +
geom_point(aes(x=displ, y = hwy, color=class))+
geom_smooth(aes(x=displ, y = hwy))
ggplot(data = mpg, aes(x=displ, y = hwy, color=class)) +
geom_point()+
geom_smooth()