<script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"></script>
<script
        src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
        integrity="sha256-3edrmyuQ0w65f8gfBsqowzjJe2iM6n0nKciPUp8y+7E="
        crossorigin="anonymous">
</script>
<script>
    class Gene
    {
        /**
         * Constructs a new Gene to store in a chromosome.
         * @param min minimum value that this gene can store
         * @param max value this gene can possibly be
         * @param value normalized value
         */
        constructor(min, max, value)
        {
            this.min = min;
            this.max = max;
            this.value = value;
        }
        /**
         * De-normalizes the value of the gene
         * @returns {*}
         */
        getRealValue()
        {
            return (this.max - this.min) * this.value + this.min;
        }
        getValue()
        {
            return this.value;
        }
        setValue(val)
        {
            this.value = val;
        }
        makeClone()
        {
            return new Gene(this.min, this.max, this.value);
        }
        makeRandomGene()
        {
            return new Gene(this.min, this.max, Math.random());
        }
    }
    class Chromosome
    {
        /**
         * Constructs a chromosome by making a copy of
         * a list of genes.
         * @param geneArray
         */
        constructor(geneArray)
        {
            this.genes = [];
            for(let i = 0; i < geneArray.length; i++)
            {
                this.genes.push(geneArray[i].makeClone());
            }
        }
        getGenes()
        {
            return this.genes;
        }
        /**
         * Mutates a random gene.
         */
        mutate()
        {
            this.genes[Math.round(Math.random() * (this.genes.length-1))].setValue(Math.random());
        }
        /**
         * Creates a totally new chromosome with same
         * genetic structure as this chromosome but different
         * values.
         * @returns {Chromosome}
         */
        createRandomChromosome()
        {
            let geneAr = [];
            for(let i = 0; i < this.genes.length; i++)
            {
                geneAr.push(this.genes[i].makeRandomGene());
            }
            return new Chromosome(geneAr);
        }
    }
    /**
     * Mates two chromosomes using the blending method
     * and returns a list of 2 offspring.
     * @param father
     * @param mother
     * @returns {Chromosome[]}
     */
    const breed = function(father, mother)
    {
        let son = new Chromosome(father.getGenes());
        let daughter = new Chromosome(mother.getGenes());
        for(let i = 0;i < son.getGenes().length; i++)
        {
            let blendCoef = Math.random();
            blendGene(son.getGenes()[i], daughter.getGenes()[i], blendCoef);
        }
        return [son, daughter];
    };
    /**
     * Blends two genes together based on a random blend
     * coefficient.
     **/
    const blendGene = function(gene1, gene2, blendCoef)
    {
        let value1 = (blendCoef * gene1.getValue()) +
            (gene2.getValue() * (1- blendCoef));
        let value2 = ((1-blendCoef) * gene1.getValue()) +
            (gene2.getValue() * blendCoef);
        gene1.setValue(value1);
        gene2.setValue(value2);
    };
    /**
     * Helper function to sort an array
     *
     * @param prop name of JSON property to sort by
     * @returns {function(*, *): number}
     */
    function predicateBy(prop)
    {
        return function(a,b)
        {
            var result;
            if(a[prop] > b[prop])
            {
                result =  1;
            }
            else if(a[prop] < b[prop])
            {
                result = -1;
            }
            return result;
        }
    }
    /**
     * Function which computes the fitness of everyone in the
     * population and returns the most fit survivors. Method
     * known as elitism.
     *
     * @param population
     * @param keepNumber
     * @param fitnessFunction
     * @returns {{average: number,
     * survivors: Array, bestFit: Chromosome }}
     */
    const naturalSelection = function(population, keepNumber, fitnessFunction)
    {
        let fitnessArray = [];
        let total = 0;
        for(let i = 0; i < population.length; i++)
        {
            const fitness = fitnessFunction(population[i]);
            fitnessArray.push({fit:fitness, chrom: population[i]});
            total+= fitness;
        }
        fitnessArray.sort(predicateBy("fit"));
        let survivors = [];
        let bestFitness = fitnessArray[0].fit;
        let bestChromosome = fitnessArray[0].chrom;
        for(let i = 0; i < keepNumber; i++)
        {
            survivors.push(fitnessArray[i].chrom);
        }
        return {average: total/population.length, survivors: survivors, bestFit: bestFitness, bestChrom: bestChromosome};
    };
    /**
     * Randomly  everyone in the population
     *
     * @param population
     * @param desiredPopulationSize
     */
    const matePopulation = function(population, desiredPopulationSize)
    {
        const originalLength = population.length;
        while(population.length < desiredPopulationSize)
        {
            let index1 = Math.round(Math.random() * (originalLength-1));
            let index2 = Math.round(Math.random() * (originalLength-1));
            if(index1 !== index2)
            {
                const babies = breed(population[index1], population[index2]);
                population.push(babies[0]);
                population.push(babies[1]);
            }
        }
    };
    /**
     * Randomly mutates the population
     **/
    const mutatePopulation = function(population, mutatePercentage)
    {
        if(population.length >= 2)
        {
            let mutations = mutatePercentage *
                population.length *
                population[0].getGenes().length;
            for(let i = 0; i < mutations; i++)
            {
                population[i].mutate();
            }
        }
        else
        {
            console.log("Error, population too small to mutate");
        }
    };
    /**
     * Introduces x random chromosomes to the population.
     * @param population
     * @param immigrationSize
     */
    const newBlood = function(population, immigrationSize)
    {
        for(let i = 0; i < immigrationSize; i++)
        {
            let geneticChromosome = population[0];
            population.push(geneticChromosome.createRandomChromosome());
        }
    };
    let costx = Math.random() * 10;
    let costy = Math.random() * 10;
    /** Defines the cost as the "distance" to a 2-d point.
     * @param chromosome
     * @returns {number}
     */
    const basicCostFunction = function(chromosome)
    {
        return Math.abs(chromosome.getGenes()[0].getRealValue() - costx) +
            Math.abs(chromosome.getGenes()[1].getRealValue() - costy);
    };
    /**
     * Creates a totally random population based  on a desired size
     * and a prototypical chromosome.
     *
     * @param geneticChromosome
     * @param populationSize
     * @returns {Array}
     */
    const createRandomPopulation = function(geneticChromosome, populationSize)
    {
        let population = [];
        for(let i = 0; i < populationSize; i++)
        {
            population.push(geneticChromosome.createRandomChromosome());
        }
        return population;
    };
    /**
     * Runs the genetic algorithm by going through the processes of
     * natural selection, mutation, mating, and immigrations. This
     * process will continue until an adequately performing chromosome
     * is found or a generation threshold is passed.
     *
     * @param geneticChromosome Prototypical chromosome: used so algo knows
     *                            what the dna of the population looks like.
     * @param costFunction Function which defines how bad a Chromosome is
     * @param populationSize Desired population size for population
     * @param maxGenerations Cut off level for number of generations to run
     * @param desiredCost Sufficient cost to terminate program at
     * @param mutationRate Number between [0,1] representing proportion of genes
     * to mutate each generation
     * @param keepNumber Number of Organisms which survive each generation
     * @param newBloodNumber Number of random immigrants to introduce into
     * the population each generation.
     * @returns {*}
     */
    const runGeneticOptimization = function(geneticChromosome, costFunction,
                                            populationSize, maxGenerations,
                                            desiredCost, mutationRate, keepNumber,
                                            newBloodNumber)
    {
        let population = createRandomPopulation(geneticChromosome, populationSize);
        let generation = 0;
        let bestCost = Number.MAX_VALUE;
        let bestChromosome = geneticChromosome;
        do
        {
            matePopulation(population, populationSize);
            newBlood(population, newBloodNumber);
            mutatePopulation(population, mutationRate);
            let generationResult = naturalSelection(population, keepNumber, costFunction);
            if(bestCost > generationResult.bestFit)
            {
                bestChromosome = generationResult.bestChrom;
                bestCost = generationResult.bestFit;
            }
            population = generationResult.survivors;
            generation++;
            console.log("Generation " + generation + " Best Cost: " + bestCost);
        }while(generation < maxGenerations && bestCost > desiredCost);
        return bestChromosome;
    };
    /**
     * Ugly globals used to keep track of population state for the graph.
     */
    let genericChromosomeG, costFunctionG,
        populationSizeG, maxGenerationsG,
        desiredCostG, mutationRateG, keepNumberG,
        newBloodNumberG, populationG, generationG,
        bestCostG = Number.MAX_VALUE, bestChromosomeG = genericChromosomeG;
    const runGeneticOptimizationForGraph = function()
    {
        let generationResult = naturalSelection(populationG, keepNumberG, costFunctionG);
        stats.push([generationG, generationResult.bestFit, generationResult.average]);
        if(bestCostG > generationResult.bestFit)
        {
            bestChromosomeG = generationResult.bestChrom;
            bestCostG = generationResult.bestFit;
        }
        populationG = generationResult.survivors;
        generationG++;
        console.log("Generation " + generationG + " Best Cost: " + bestCostG);
        console.log(generationResult);
        matePopulation(populationG, populationSizeG);
        newBlood(populationG, newBloodNumberG);
        mutatePopulation(populationG, mutationRateG);
        createGraph();
    };
    let stats = [];
    const createGraph = function()
    {
        var dataPoints = [];
        console.log(dataPoints);
        var data = new google.visualization.DataTable();
        data.addColumn('number', 'Gene 1');
        data.addColumn('number', 'Gene 2');
        for(let i = 0; i < populationG.length; i++)
        {
            data.addRow([populationG[i].getGenes()[0].getRealValue(),
                populationG[i].getGenes()[1].getRealValue()]);
        }
        var options = {
            title: 'Genetic Evolution On Two Genes Generation: ' + generationG,
            hAxis: {title: 'Gene 1', minValue: 0, maxValue: 10},
            vAxis: {title: 'Gene 2', minValue: 0, maxValue: 10},
        };
        var chart = new google.visualization.ScatterChart(document.getElementById('chart_div'));
        chart.draw(data, options);
        //line chart stuff
        var line_data = new google.visualization.DataTable();
        line_data.addColumn('number', 'Generation');
        line_data.addColumn('number', 'Best');
        line_data.addColumn('number', 'Average');
        line_data.addRows(stats);
        console.log(stats);
        var lineChartOptions = {
            hAxis: {
                title: 'Generation'
            },
            vAxis: {
                title: 'Cost'
            },
            colors: ['#AB0D06', '#007329']
        };
        var chart = new google.visualization.LineChart(document.getElementById('line_chart'));
        chart.draw(line_data, lineChartOptions);
    };
    let gene1 = new Gene(1,10,10);
    let gene2 = new Gene(1,10,0.4);
    let geneList = [gene1, gene2];
    let exampleOrganism = new Chromosome(geneList);
    genericChromosomeG = exampleOrganism;
    costFunctionG = basicCostFunction;
    populationSizeG = 100;
    maxGenerationsG = 30;
    desiredCostG = 0.00001;
    mutationRateG = 0.3;
    keepNumberG = 30;
    newBloodNumberG = 10;
    generationG = 0;
    function verifyForm()
    {
        if(Number($("#populationSize").val()) <= 1)
        {
            alert("Population size must be greater than one.");
            return false;
        }
        if(Number($("#mutationRate").val()) > 1 ||
            Number($("#mutationRate").val()) < 0)
        {
            alert("Mutation rate must be between zero and one.");
            return false;
        }
        if(Number($("#survivalSize").val()) < 0)
        {
            alert("Survival size can't be less than one.");
            return false;
        }
        if(Number($("#newBlood").val()) < 0)
        {
            alert("New organisms can't be a negative number.");
            return false;
        }
        return true;
    }
    function resetPopulation()
    {
        if(verifyForm())
        {
            stats = [];
            autoRunning = false;
            $("#runAutoOptimizer").val("Auto Run");
            populationSizeG = $("#populationSize").val();
            mutationRateG = $("#mutationRate").val();
            keepNumberG = $("#survivalSize").val();
            newBloodNumberG = $("#newBlood").val();
            generationG = 0;
            populationG = createRandomPopulation(genericChromosomeG, populationSizeG);
            createGraph();
        }
    }
    populationG = createRandomPopulation(genericChromosomeG, populationSizeG);
    window.onload = function (){
        google.charts.load('current', {packages: ['corechart', 'line']});
        google.charts.load('current', {'packages':['corechart']}).then(function()
        {
            createGraph();
        })
    };
    let autoRunning = false;
    function runAutoOptimizer()
    {
        if(autoRunning === true)
        {
            runGeneticOptimizationForGraph();
            setTimeout(runAutoOptimizer, 1000);
        }
    }
    function startStopAutoRun()
    {
        autoRunning = !autoRunning;
        if(autoRunning)
        {
            $("#runAutoOptimizer").val("Stop Auto Run");
        }
        else
        {
            $("#runAutoOptimizer").val("Resume Auto Run");
        }
        runAutoOptimizer();
    }
</script>
<div id="chart_div"></div>
<div id="line_chart"></div>
<input class='btn btn-primary' id="runOptimizer" onclick='runGeneticOptimizationForGraph()' type="button" value="Next Generation">
<input class='btn btn-primary' id="runAutoOptimizer" onclick='startStopAutoRun()' type="button" value="Auto Run">
<br>
<br>
<div class="card">
    <div class="card-header">
        <h2>Population Variables</h2>
    </div>
    <form class="card-body">
        <div class="row p-2">
            <div class="col">
                <label for="populationSize">Population Size</label>
                <input type="text" class="form-control" value="100" id="populationSize" placeholder="Population Size" required>
            </div>
            <div class="col">
                <label for="populationSize">Survival Size</label>
                <input type="text" class="form-control" value="20" id="survivalSize" placeholder="Survival Size" required>
            </div>
        </div>
        <div class="row p-2">
            <div class="col">
                <label for="populationSize">Mutation Rate</label>
                <input type="text" class="form-control" value="0.03" id="mutationRate" placeholder="Mutation Rate" required>
            </div>
            <div class="col">
                <label for="populationSize">New Organisms Per Generation</label>
                <input type="text" class="form-control" value="5" id="newBlood" placeholder="New Organisms" required>
            </div>
        </div>
        <br>
        <input class='btn btn-primary' id="reset" onclick='resetPopulation()' type="button" value="Reset Population">
    </form>
</div>