This post aims to cover all the major topics that C programmers need to know before they start writing C++ programs. I kept this post as short and concise as possible to enable people to use this as a quick reference to jump into C++. This post assumes that you have prior knowledge of both C and object oriented programming concepts. ## Input/Output Input and output in C++ is pretty easy, you just use "cout" and "cin". When printing with "cout", you separate what your printing with "<<", the "endl" at the end prints a new line. ```c++ using namespace std; //namespaces talked about below #include //Include statement for terminal IO. int main() { cout << "Hello World" << endl; // HELLO WORLD! int a; cin << a; //inputs an int into a cout << "You entered: << a << endl; //prints what you entered return 0; // return sucess code } ``` If you wish to run a C++ program simply save it with the extension ".cpp", you then can compile and run it with g++. Compiling a C++ program with g++ is nearly the same as compiling a C program with gcc. ex: ```bash g++ helloWorld.cpp -o hello ./hello ``` ## Namespaces Name spaces are used to enable you to have multiple functions/methods called the same thing and not conflict with one another. You use "namespacename::function/variable" to access something inside of a namespace. To prevent you from always having to type "namespacename::", you can use a namespace which makes that namespace "default". ```c++ using namespace std; //tells compiler we want to use std namespace namespace foo //declares a namespece named foo { int a, b; void fun() { cout << "Inside foo namespace" << endl; } } namespace bar { void fun() //declares a function with the same name as another function { cout << "Inside bar namespace" << endl; } } using namespace foo; //start useing foo instead of std as selected namespace int main() { fun(); bar::fun(); int a = 5; foo::a = 12; std::cout << "a: " << a << endl; //had to use std::cout since the default namespace is foo std::cout << "foo::a: " << foo::a << endl; return 0; } ``` ## Global Variable Similar to C, however, you can now reference a global variable with the "::" accessor. ```c++ using namespace std; #include double bar = 64; int main () { double bar = 12; cout << "Local bar: " << bar << endl; //prints 12 cout << "Global bar: " << ::bar << endl; //prints 64 return 0; } ``` ## Multiple Names for a Variable/Aliasing This is simply NOT a pointer. In the following example pi, and x now are treated as the same exact variable. You cannot later change the pointer destination for x. ```c++ double pi = 3.145; double &x = pi; //pi is x x = 2.1; cout << "pi: " << pi << " x: " << x << endl; // prints pi: 2.1 x: 2.1 ``` ## Passing Variables by Reference In C, everything was passed by value -- only way to get around this was by passing pointers. C++ now allows us to pass variables by reference. This is very powerful, in languages like Java, only Objects are passed by reference. C++ lets you decide exactly what gets passed by reference or by value. ```c++ void change (double &r, double s) //r is passed by reference { r = 100; s = 200; } int main() { int x = 1; int y = 2; cout << x << ", " << y << endl; change(x, y); cout << x << ", " << y << endl; return 0; } ``` Same code in C. This method still works in C++. ```c void change(double *r, double s) { *r = 100; s = 200; } int main() { int x = 1; int y = 2; printf("%d, %d", x, y); //printf doesn't exist in c++. change(&x, y); printf("%d, %d", x, y); return 0; } ``` ## Functions Returning Variables not Values A function can return a variable -- not a value. In the following example, a function returns the reference to the variable which is the smallest. ```c++ using namespace std; #include int &smallest (int &x, int &y) //smallest returns a reference to a variable { if (x < y) return x; else return y; } int main () { int k = 33; int m = 2; cout << "k: " << k << " m: " << m << endl; // prints k: 33 m: 2 smallest (k, m) = 10; // MAGIC! cout << "k: " << k << " m: " << m << endl; // prints k: 33 m: 10 return 0; } ``` ## Inline -- similar to Macros Inline can be used to replace a function which contains very simple logic -- no for loops, etc. Like a macro, this will be inserted everywhere the code is used; a draw back to inline methods is that the compiled source will be larger. But, they typically run faster. ```c++ inline int square(int x) { return x * y; } int main() { int k = 4; cout << square(k) << endl; //prints 4 return 0; } ``` ## Exceptions Exceptions might help you stop segmentation faulting. The important thing to notice is that you can throw just about any type in a try block. ```c++ int x; cout << "Type a number: "; cin >> x; cout << endl; try { if(a > 150) throw 150; if(a < 15) throw 15; throw a % 2; } catch(int result) { cout << result << " was thrown." << endl; } ``` ## Default Parameters for Functions This is exactly like default parameters in Python. If a function is called without the parameter, it is assumed to be that value. ```c++ double multiply(double x, double y = 5) { return x * y; } int main() { cout << multiply(4) << endl; // 20 cout << multiply(4, 4) endl; // 15 return 0; } ``` ## Function Overloading ```c++ double add(double x) { return x + x; } double add(double x, double y) { return x + y; } int add(int x, int y) { return x + y; } int main() { cout << multiply(4) << endl; // 20 cout << multiply(4, 4) endl; // 15 return 0; } ``` ## Operator Overloading ```c++ using namespace std; #include struct tuple { int x; int y; }; tuple operator + (int a, vector b) { vector r; r.x = a + b.x; r.y = a + b.y; return r; } int main () { tuple k, m; // No need to type "struct tuple" // also no need to typedef k.x = 3; k.y = 6; m = 2 + k; // Voodoo witchcraft cout << "(" << m.x << ", " << m.y << ")" << endl; return 0; } ``` ## Functions with Generic Parameter Types ```c++ template ttype max (ttype a, ttype b) { ttype r; r = a; if (b < a) r = b; return r; } template type1 maximum (type1 a, type2 b) { type1 r, b_converted; r = a; b_converted = (type1) b; if (b_converted > a) r = b_converted; return r; } ``` ## Replacement for malloc and free ```c++ int i*; i = new int; *i = 55; delete i; i = new int[15]; i[0] = 99; delete i; ``` ## Struct Functions ```c++ struct tuple { int i; int x; int sum() { return i + x; } }; ``` # Classes ```c++ class Tuple { public: int i; int x; int sum() { return i + x; } }; ``` ## Class Constructor and De-constructor ```c++ class Tuple { public: int i; int x; Tuple(int i1, int i2) { i = i1; x = i2; } ~Tuple() { //delete any memory you have! } int sum() { return i + x; } }; // in main Tuple t (12, 14); Tuple tt = new Tuple(12, 15); ``` ## Scope ```c++ class Person { protected: int age; string name; public: Person(int age, string name) { } ~Person() { } private: void increaseAge() { age++; } } ``` ## This keyword ```c++ class Person { protected: int age; string name; public: Person(int age, string name) { this->age = age; strcpy(this->name, name); } ~Person() { } private: void increaseAge() { age++; } } ``` ## Class Inheritance ```c++ class Tuple { protected: int x; int y; public: Tuple(int i1, int i2) { x = i1; y = i2; } virtual int sum() { return i + x; } }; class Triple: public Tuple { protected: int x; int y; int z; public: Triple(int i1, int i2, i3): Tuple(i1, i2) { z = i3; } int sum() { return x + y + z; } }; ``` ## "Abstract" Classes ```c++ class Animal { public: virtual void speak()=0; } class Cat: public Animal { public: void speak() { cout << "Meow" << endl; } }; ``` ## Method Prototypes for Classes ```c++ class Cat: public Animal { public: void speak() { cout << "Meow" << endl; } int fly(); //method prototype }; // Off in a header file or something int Cat::fly() { return 42; } ``` # File IO ## Reading From File ```c++ #include //in main or somewhere fstream f; char c; f.open("p022_names.txt", ios::in); while(!f.eof()) { f.get(c); cout << c; } f.close(); ``` ## Writing to File ```c++ #include //in main or somewhere fstream f; char c; f.open("p022_names.txt", ios::out); f << "stuff in the file " << endl; int i = 4; f << i << " this is also in the text file" << endl; f.close(); ```