| @ -0,0 +1,900 @@ | |||
| Last week I scrapped a bunch of data from the Steam API using my [Steam Graph Project](https://github.com/jrtechs/SteamFriendsGraph). | |||
| This project captures steam users, their friends, and the games that they own. | |||
| Using the Janus-Graph traversal object, I use the Gremlin graph query language to pull this data. | |||
| Since I am storing the hours played in a game as a property on the relationship between a player and a game node, I had to make a "join" statement to get the hours property with the game information in a single query. | |||
| ```java | |||
| Object o = graph.con.getTraversal() | |||
| .V() | |||
| .hasLabel(Game.KEY_DB) | |||
| .match( | |||
| __.as("c").values(Game.KEY_STEAM_GAME_ID).as("gameID"), | |||
| __.as("c").values(Game.KEY_GAME_NAME).as("gameName"), | |||
| __.as("c").inE(Game.KEY_RELATIONSHIP).values(Game.KEY_PLAY_TIME).as("time") | |||
| ).select("gameID", "time", "gameName").toList(); | |||
| WrappedFileWriter.writeToFile(new Gson().toJson(o).toLowerCase(), "games.json"); | |||
| ``` | |||
| Using the game indexing property on the players, I noted that I only ended up wholly indexing the games of 481 players after 8 hours. | |||
| ```java | |||
| graph.con.getTraversal() | |||
| .V() | |||
| .hasLabel(SteamGraph.KEY_PLAYER) | |||
| .has(SteamGraph.KEY_CRAWLED_GAME_STATUS, 1) | |||
| .count().next() | |||
| ``` | |||
| We now transition to Python and Matlptlib to visualize the data exported from our JanusGraph Query as a JSON object. | |||
| The dependencies for this [notebook](https://github.com/jrtechs/RandomScripts/tree/master/notebooks) can get installed using pip. | |||
| ```python | |||
| !pip install pandas | |||
| !pip install matplotlib | |||
| ``` | |||
| ``` | |||
| Collecting pandas | |||
| Downloading pandas-1.0.5-cp38-cp38-manylinux1_x86_64.whl (10.0 MB) | |||
| [K |████████████████████████████████| 10.0 MB 4.3 MB/s eta 0:00:01 | |||
| [?25hCollecting pytz>=2017.2 | |||
| Downloading pytz-2020.1-py2.py3-none-any.whl (510 kB) | |||
| [K |████████████████████████████████| 510 kB 2.9 MB/s eta 0:00:01 | |||
| [?25hRequirement already satisfied: numpy>=1.13.3 in /home/jeff/Documents/python/ml/lib/python3.8/site-packages (from pandas) (1.18.5) | |||
| Requirement already satisfied: python-dateutil>=2.6.1 in /home/jeff/Documents/python/ml/lib/python3.8/site-packages (from pandas) (2.8.1) | |||
| Requirement already satisfied: six>=1.5 in /home/jeff/Documents/python/ml/lib/python3.8/site-packages (from python-dateutil>=2.6.1->pandas) (1.15.0) | |||
| Installing collected packages: pytz, pandas | |||
| Successfully installed pandas-1.0.5 pytz-2020.1 | |||
| ``` | |||
| The first thing we are doing is importing our JSON data as a pandas data frame. | |||
| Pandas is an open-source data analysis and manipulation tool. | |||
| I enjoy pandas because it has native integration with matplotlib and supports operations like aggregations and groupings. | |||
| ```python | |||
| import matplotlib.pyplot as plt | |||
| import pandas as pd | |||
| games_df = pd.read_json('games.json') | |||
| games_df | |||
| ``` | |||
| <div> | |||
| <style scoped> | |||
| .dataframe tbody tr th:only-of-type { | |||
| vertical-align: middle; | |||
| } | |||
| .dataframe tbody tr th { | |||
| vertical-align: top; | |||
| } | |||
| .dataframe thead th { | |||
| text-align: right; | |||
| } | |||
| </style> | |||
| <table border="1" class="dataframe"> | |||
| <thead> | |||
| <tr style="text-align: right;"> | |||
| <th></th> | |||
| <th>gameid</th> | |||
| <th>time</th> | |||
| <th>gamename</th> | |||
| </tr> | |||
| </thead> | |||
| <tbody> | |||
| <tr> | |||
| <th>0</th> | |||
| <td>210770</td> | |||
| <td>243</td> | |||
| <td>sanctum 2</td> | |||
| </tr> | |||
| <tr> | |||
| <th>1</th> | |||
| <td>210770</td> | |||
| <td>31</td> | |||
| <td>sanctum 2</td> | |||
| </tr> | |||
| <tr> | |||
| <th>2</th> | |||
| <td>210770</td> | |||
| <td>276</td> | |||
| <td>sanctum 2</td> | |||
| </tr> | |||
| <tr> | |||
| <th>3</th> | |||
| <td>210770</td> | |||
| <td>147</td> | |||
| <td>sanctum 2</td> | |||
| </tr> | |||
| <tr> | |||
| <th>4</th> | |||
| <td>210770</td> | |||
| <td>52</td> | |||
| <td>sanctum 2</td> | |||
| </tr> | |||
| <tr> | |||
| <th>...</th> | |||
| <td>...</td> | |||
| <td>...</td> | |||
| <td>...</td> | |||
| </tr> | |||
| <tr> | |||
| <th>36212</th> | |||
| <td>9800</td> | |||
| <td>9</td> | |||
| <td>death to spies</td> | |||
| </tr> | |||
| <tr> | |||
| <th>36213</th> | |||
| <td>445220</td> | |||
| <td>0</td> | |||
| <td>avorion</td> | |||
| </tr> | |||
| <tr> | |||
| <th>36214</th> | |||
| <td>445220</td> | |||
| <td>25509</td> | |||
| <td>avorion</td> | |||
| </tr> | |||
| <tr> | |||
| <th>36215</th> | |||
| <td>445220</td> | |||
| <td>763</td> | |||
| <td>avorion</td> | |||
| </tr> | |||
| <tr> | |||
| <th>36216</th> | |||
| <td>445220</td> | |||
| <td>3175</td> | |||
| <td>avorion</td> | |||
| </tr> | |||
| </tbody> | |||
| </table> | |||
| <p>36217 rows × 3 columns</p> | |||
| </div> | |||
| Using the built-in matplotlib wrapper function, we can graph a histogram of the number of hours played in a game. | |||
| ```python | |||
| ax = games_df.hist(column='time', bins=20, range=(0, 4000)) | |||
| ax=ax[0][0] | |||
| ax.set_title("Game Play Distribution") | |||
| ax.set_xlabel("Minutes Played") | |||
| ax.set_ylabel("Frequency") | |||
| ``` | |||
|  | |||
| Notice that the vast majority of the games are rarely ever played, however, it is skewed to the right with a lot of outliers. | |||
| We can change the scale to make it easier to view using the range parameter. | |||
| ```python | |||
| ax = games_df.hist(column='time', bins=20, range=(0, 100)) | |||
| ax=ax[0][0] | |||
| ax.set_title("Game Play Distribution") | |||
| ax.set_xlabel("Minutes Played") | |||
| ax.set_ylabel("Frequency") | |||
| ``` | |||
|  | |||
| If we remove games that have never been played, the distribution looks more reasonable. | |||
| ```python | |||
| ax = games_df.hist(column='time', bins=20, range=(2, 100)) | |||
| ax=ax[0][0] | |||
| ax.set_title("Game Play Distribution") | |||
| ax.set_xlabel("Minutes Played") | |||
| ax.set_ylabel("Frequency") | |||
| ``` | |||
|  | |||
| Although histograms are useful, viewing the CDF is often more helpful since it is easier to extract numerical information. | |||
| ```python | |||
| ax = games_df.hist(column='time',density=True, range=(0, 2000), histtype='step',cumulative=True) | |||
| ax=ax[0][0] | |||
| ax.set_title("Game Play Distribution") | |||
| ax.set_xlabel("Minutes Played") | |||
| ax.set_ylabel("Frequency") | |||
| ``` | |||
|  | |||
| According to this graph, about 80% of people on steam who own a game, play it under 4 hours. Nearly half of all downloaded or purchased steam games go un-played. This data is a neat example of the legendary 80/20 principle -- aka the Pareto principle. The Pareto principle states that roughly 80% of the effects come from 20% of the causes. IE: 20% of software bugs result in 80% of debugging time. | |||
| As mentioned earlier, the time in owned game distribution is heavily skewed to the right. | |||
| ```python | |||
| ax = plt.gca() | |||
| ax.set_title('Game Play Distribution') | |||
| ax.boxplot(games_df['time'], vert=False,manage_ticks=False, notch=True) | |||
| plt.xlabel("Game Play in Minutes") | |||
| ax.set_yticks([]) | |||
| plt.show() | |||
| ``` | |||
|  | |||
| When zooming in on the distribution, we see that nearly half of all the purchased games go un-opened. | |||
| ```python | |||
| ax = plt.gca() | |||
| ax.set_title('Game Play Distribution') | |||
| ax.boxplot(games_df['time']/60, vert=False,manage_ticks=False, notch=True) | |||
| plt.xlabel("Game Play in Hours") | |||
| ax.set_yticks([]) | |||
| ax.set_xlim([0, 10]) | |||
| plt.show() | |||
| ``` | |||
|  | |||
| Viewing the aggregate pool of hours in particular game data is insightful; however, comparing different games against each other is more interesting. | |||
| In pandas, after we create a grouping on a column, we can aggregate it into metrics such as max, min, mean, etc. | |||
| I am also sorting the data I get by count since we are more interested in "popular" games. | |||
| ```python | |||
| stats_df = (games_df.groupby("gamename") | |||
| .agg({'time': ['count', "min", 'max', 'mean']}) | |||
| .sort_values(by=('time', 'count'))) | |||
| stats_df | |||
| ``` | |||
| <div> | |||
| <style scoped> | |||
| .dataframe tbody tr th:only-of-type { | |||
| vertical-align: middle; | |||
| } | |||
| .dataframe tbody tr th { | |||
| vertical-align: top; | |||
| } | |||
| .dataframe thead tr th { | |||
| text-align: left; | |||
| } | |||
| .dataframe thead tr:last-of-type th { | |||
| text-align: right; | |||
| } | |||
| </style> | |||
| <table border="1" class="dataframe"> | |||
| <thead> | |||
| <tr> | |||
| <th></th> | |||
| <th colspan="4" halign="left">time</th> | |||
| </tr> | |||
| <tr> | |||
| <th></th> | |||
| <th>count</th> | |||
| <th>min</th> | |||
| <th>max</th> | |||
| <th>mean</th> | |||
| </tr> | |||
| <tr> | |||
| <th>gamename</th> | |||
| <th></th> | |||
| <th></th> | |||
| <th></th> | |||
| <th></th> | |||
| </tr> | |||
| </thead> | |||
| <tbody> | |||
| <tr> | |||
| <th>龙魂时刻</th> | |||
| <td>1</td> | |||
| <td>14</td> | |||
| <td>14</td> | |||
| <td>14.000000</td> | |||
| </tr> | |||
| <tr> | |||
| <th>gryphon knight epic</th> | |||
| <td>1</td> | |||
| <td>0</td> | |||
| <td>0</td> | |||
| <td>0.000000</td> | |||
| </tr> | |||
| <tr> | |||
| <th>growing pains</th> | |||
| <td>1</td> | |||
| <td>0</td> | |||
| <td>0</td> | |||
| <td>0.000000</td> | |||
| </tr> | |||
| <tr> | |||
| <th>shoppy mart: steam edition</th> | |||
| <td>1</td> | |||
| <td>0</td> | |||
| <td>0</td> | |||
| <td>0.000000</td> | |||
| </tr> | |||
| <tr> | |||
| <th>ground pounders</th> | |||
| <td>1</td> | |||
| <td>0</td> | |||
| <td>0</td> | |||
| <td>0.000000</td> | |||
| </tr> | |||
| <tr> | |||
| <th>...</th> | |||
| <td>...</td> | |||
| <td>...</td> | |||
| <td>...</td> | |||
| <td>...</td> | |||
| </tr> | |||
| <tr> | |||
| <th>payday 2</th> | |||
| <td>102</td> | |||
| <td>0</td> | |||
| <td>84023</td> | |||
| <td>5115.813725</td> | |||
| </tr> | |||
| <tr> | |||
| <th>team fortress 2</th> | |||
| <td>105</td> | |||
| <td>7</td> | |||
| <td>304090</td> | |||
| <td>25291.180952</td> | |||
| </tr> | |||
| <tr> | |||
| <th>unturned</th> | |||
| <td>107</td> | |||
| <td>0</td> | |||
| <td>16974</td> | |||
| <td>1339.757009</td> | |||
| </tr> | |||
| <tr> | |||
| <th>garry's mod</th> | |||
| <td>121</td> | |||
| <td>0</td> | |||
| <td>311103</td> | |||
| <td>20890.314050</td> | |||
| </tr> | |||
| <tr> | |||
| <th>counter-strike: global offensive</th> | |||
| <td>129</td> | |||
| <td>0</td> | |||
| <td>506638</td> | |||
| <td>46356.209302</td> | |||
| </tr> | |||
| </tbody> | |||
| </table> | |||
| <p>9235 rows × 4 columns</p> | |||
| </div> | |||
| To prevent one-off esoteric games that I don't have a lot of data for, throwing off metrics, I am disregarding any games that I have less than ten values for. | |||
| ```python | |||
| stats_df = stats_df[stats_df[('time', 'count')] > 10] | |||
| stats_df | |||
| ``` | |||
| <div> | |||
| <style scoped> | |||
| .dataframe tbody tr th:only-of-type { | |||
| vertical-align: middle; | |||
| } | |||
| .dataframe tbody tr th { | |||
| vertical-align: top; | |||
| } | |||
| .dataframe thead tr th { | |||
| text-align: left; | |||
| } | |||
| .dataframe thead tr:last-of-type th { | |||
| text-align: right; | |||
| } | |||
| </style> | |||
| <table border="1" class="dataframe"> | |||
| <thead> | |||
| <tr> | |||
| <th></th> | |||
| <th colspan="4" halign="left">time</th> | |||
| </tr> | |||
| <tr> | |||
| <th></th> | |||
| <th>count</th> | |||
| <th>min</th> | |||
| <th>max</th> | |||
| <th>mean</th> | |||
| </tr> | |||
| <tr> | |||
| <th>gamename</th> | |||
| <th></th> | |||
| <th></th> | |||
| <th></th> | |||
| <th></th> | |||
| </tr> | |||
| </thead> | |||
| <tbody> | |||
| <tr> | |||
| <th>serious sam hd: the second encounter</th> | |||
| <td>11</td> | |||
| <td>0</td> | |||
| <td>329</td> | |||
| <td>57.909091</td> | |||
| </tr> | |||
| <tr> | |||
| <th>grim fandango remastered</th> | |||
| <td>11</td> | |||
| <td>0</td> | |||
| <td>248</td> | |||
| <td>35.000000</td> | |||
| </tr> | |||
| <tr> | |||
| <th>evga precision x1</th> | |||
| <td>11</td> | |||
| <td>0</td> | |||
| <td>21766</td> | |||
| <td>2498.181818</td> | |||
| </tr> | |||
| <tr> | |||
| <th>f.e.a.r. 2: project origin</th> | |||
| <td>11</td> | |||
| <td>0</td> | |||
| <td>292</td> | |||
| <td>43.272727</td> | |||
| </tr> | |||
| <tr> | |||
| <th>transistor</th> | |||
| <td>11</td> | |||
| <td>0</td> | |||
| <td>972</td> | |||
| <td>298.727273</td> | |||
| </tr> | |||
| <tr> | |||
| <th>...</th> | |||
| <td>...</td> | |||
| <td>...</td> | |||
| <td>...</td> | |||
| <td>...</td> | |||
| </tr> | |||
| <tr> | |||
| <th>payday 2</th> | |||
| <td>102</td> | |||
| <td>0</td> | |||
| <td>84023</td> | |||
| <td>5115.813725</td> | |||
| </tr> | |||
| <tr> | |||
| <th>team fortress 2</th> | |||
| <td>105</td> | |||
| <td>7</td> | |||
| <td>304090</td> | |||
| <td>25291.180952</td> | |||
| </tr> | |||
| <tr> | |||
| <th>unturned</th> | |||
| <td>107</td> | |||
| <td>0</td> | |||
| <td>16974</td> | |||
| <td>1339.757009</td> | |||
| </tr> | |||
| <tr> | |||
| <th>garry's mod</th> | |||
| <td>121</td> | |||
| <td>0</td> | |||
| <td>311103</td> | |||
| <td>20890.314050</td> | |||
| </tr> | |||
| <tr> | |||
| <th>counter-strike: global offensive</th> | |||
| <td>129</td> | |||
| <td>0</td> | |||
| <td>506638</td> | |||
| <td>46356.209302</td> | |||
| </tr> | |||
| </tbody> | |||
| </table> | |||
| <p>701 rows × 4 columns</p> | |||
| </div> | |||
| We see that the average, the playtime per player per game, is about 5 hours. However, as noted before, most purchased games go un-played. | |||
| ```python | |||
| ax = plt.gca() | |||
| ax.set_title('Game Play Distribution') | |||
| ax.boxplot(stats_df[('time', 'mean')]/60, vert=False,manage_ticks=False, notch=True) | |||
| plt.xlabel("Mean Game Play in Hours") | |||
| ax.set_xlim([0, 40]) | |||
| ax.set_yticks([]) | |||
| plt.show() | |||
| ``` | |||
|  | |||
| I had a hunch that more popular games got played more; however, this dataset is still too small the verify this hunch. | |||
| ```python | |||
| stats_df.plot.scatter(x=('time', 'count'), y=('time', 'mean')) | |||
| ``` | |||
|  | |||
| ```python | |||
| We can create a new filtered data frame that only contains the result of a single game to graph it. | |||
| ``` | |||
| ```python | |||
| cc_df = games_df[games_df['gamename'] == "counter-strike: global offensive"] | |||
| cc_df | |||
| ``` | |||
| <div> | |||
| <style scoped> | |||
| .dataframe tbody tr th:only-of-type { | |||
| vertical-align: middle; | |||
| } | |||
| .dataframe tbody tr th { | |||
| vertical-align: top; | |||
| } | |||
| .dataframe thead th { | |||
| text-align: right; | |||
| } | |||
| </style> | |||
| <table border="1" class="dataframe"> | |||
| <thead> | |||
| <tr style="text-align: right;"> | |||
| <th></th> | |||
| <th>gameid</th> | |||
| <th>time</th> | |||
| <th>gamename</th> | |||
| </tr> | |||
| </thead> | |||
| <tbody> | |||
| <tr> | |||
| <th>13196</th> | |||
| <td>730</td> | |||
| <td>742</td> | |||
| <td>counter-strike: global offensive</td> | |||
| </tr> | |||
| <tr> | |||
| <th>13197</th> | |||
| <td>730</td> | |||
| <td>16019</td> | |||
| <td>counter-strike: global offensive</td> | |||
| </tr> | |||
| <tr> | |||
| <th>13198</th> | |||
| <td>730</td> | |||
| <td>1781</td> | |||
| <td>counter-strike: global offensive</td> | |||
| </tr> | |||
| <tr> | |||
| <th>13199</th> | |||
| <td>730</td> | |||
| <td>0</td> | |||
| <td>counter-strike: global offensive</td> | |||
| </tr> | |||
| <tr> | |||
| <th>13200</th> | |||
| <td>730</td> | |||
| <td>0</td> | |||
| <td>counter-strike: global offensive</td> | |||
| </tr> | |||
| <tr> | |||
| <th>...</th> | |||
| <td>...</td> | |||
| <td>...</td> | |||
| <td>...</td> | |||
| </tr> | |||
| <tr> | |||
| <th>13320</th> | |||
| <td>730</td> | |||
| <td>3867</td> | |||
| <td>counter-strike: global offensive</td> | |||
| </tr> | |||
| <tr> | |||
| <th>13321</th> | |||
| <td>730</td> | |||
| <td>174176</td> | |||
| <td>counter-strike: global offensive</td> | |||
| </tr> | |||
| <tr> | |||
| <th>13322</th> | |||
| <td>730</td> | |||
| <td>186988</td> | |||
| <td>counter-strike: global offensive</td> | |||
| </tr> | |||
| <tr> | |||
| <th>13323</th> | |||
| <td>730</td> | |||
| <td>103341</td> | |||
| <td>counter-strike: global offensive</td> | |||
| </tr> | |||
| <tr> | |||
| <th>13324</th> | |||
| <td>730</td> | |||
| <td>10483</td> | |||
| <td>counter-strike: global offensive</td> | |||
| </tr> | |||
| </tbody> | |||
| </table> | |||
| <p>129 rows × 3 columns</p> | |||
| </div> | |||
| It is shocking how many hours certain people play in Counter-Strike. The highest number in the dataset was 8,444 hours or 352 days! | |||
| ```python | |||
| ax = plt.gca() | |||
| ax.set_title('Game Play Distribution for Counter-Strike') | |||
| ax.boxplot(cc_df['time']/60, vert=False,manage_ticks=False, notch=True) | |||
| plt.xlabel("Game Play in Hours") | |||
| ax.set_yticks([]) | |||
| plt.show() | |||
| ``` | |||
|  | |||
| Viewing the distribution for a different game like Unturned, yields a vastly different distribution than Counter-Strike. I believe the key difference is that Counter-Strike gets played competitively, where Unturned is a more leisurely game. Competitive gamers likely skew the distribution of Counter-Strike to be very high. | |||
| ```python | |||
| u_df = games_df[games_df['gamename'] == "unturned"] | |||
| u_df | |||
| ``` | |||
| <div> | |||
| <style scoped> | |||
| .dataframe tbody tr th:only-of-type { | |||
| vertical-align: middle; | |||
| } | |||
| .dataframe tbody tr th { | |||
| vertical-align: top; | |||
| } | |||
| .dataframe thead th { | |||
| text-align: right; | |||
| } | |||
| </style> | |||
| <table border="1" class="dataframe"> | |||
| <thead> | |||
| <tr style="text-align: right;"> | |||
| <th></th> | |||
| <th>gameid</th> | |||
| <th>time</th> | |||
| <th>gamename</th> | |||
| </tr> | |||
| </thead> | |||
| <tbody> | |||
| <tr> | |||
| <th>167</th> | |||
| <td>304930</td> | |||
| <td>140</td> | |||
| <td>unturned</td> | |||
| </tr> | |||
| <tr> | |||
| <th>168</th> | |||
| <td>304930</td> | |||
| <td>723</td> | |||
| <td>unturned</td> | |||
| </tr> | |||
| <tr> | |||
| <th>169</th> | |||
| <td>304930</td> | |||
| <td>1002</td> | |||
| <td>unturned</td> | |||
| </tr> | |||
| <tr> | |||
| <th>170</th> | |||
| <td>304930</td> | |||
| <td>1002</td> | |||
| <td>unturned</td> | |||
| </tr> | |||
| <tr> | |||
| <th>171</th> | |||
| <td>304930</td> | |||
| <td>0</td> | |||
| <td>unturned</td> | |||
| </tr> | |||
| <tr> | |||
| <th>...</th> | |||
| <td>...</td> | |||
| <td>...</td> | |||
| <td>...</td> | |||
| </tr> | |||
| <tr> | |||
| <th>269</th> | |||
| <td>304930</td> | |||
| <td>97</td> | |||
| <td>unturned</td> | |||
| </tr> | |||
| <tr> | |||
| <th>270</th> | |||
| <td>304930</td> | |||
| <td>768</td> | |||
| <td>unturned</td> | |||
| </tr> | |||
| <tr> | |||
| <th>271</th> | |||
| <td>304930</td> | |||
| <td>1570</td> | |||
| <td>unturned</td> | |||
| </tr> | |||
| <tr> | |||
| <th>272</th> | |||
| <td>304930</td> | |||
| <td>23</td> | |||
| <td>unturned</td> | |||
| </tr> | |||
| <tr> | |||
| <th>273</th> | |||
| <td>304930</td> | |||
| <td>115</td> | |||
| <td>unturned</td> | |||
| </tr> | |||
| </tbody> | |||
| </table> | |||
| <p>107 rows × 3 columns</p> | |||
| </div> | |||
| ```python | |||
| ax = plt.gca() | |||
| ax.set_title('Game Play Distribution for Unturned') | |||
| ax.boxplot(u_df['time']/60, vert=False,manage_ticks=False, notch=True) | |||
| plt.xlabel("Game Play in Hours") | |||
| ax.set_yticks([]) | |||
| plt.show() | |||
| ``` | |||
|  | |||
| Next, I made a data frame just containing the raw data points of games that had an aggregate count of over 80. For the crawl sample size that I did, having a count of 80 would make the game "popular." Since we only have 485 players indexed, having over 80 entries implies that over 17% of people indexed had the game. It is easy to verify that the games returned were very popular by glancing at the results. | |||
| ```python | |||
| df1 = games_df[games_df['gamename'].map(games_df['gamename'].value_counts()) > 80] | |||
| df1['time'] = df1['time']/60 | |||
| df1 | |||
| ``` | |||
| <div> | |||
| <style scoped> | |||
| .dataframe tbody tr th:only-of-type { | |||
| vertical-align: middle; | |||
| } | |||
| .dataframe tbody tr th { | |||
| vertical-align: top; | |||
| } | |||
| .dataframe thead th { | |||
| text-align: right; | |||
| } | |||
| </style> | |||
| <table border="1" class="dataframe"> | |||
| <thead> | |||
| <tr style="text-align: right;"> | |||
| <th></th> | |||
| <th>gameid</th> | |||
| <th>time</th> | |||
| <th>gamename</th> | |||
| </tr> | |||
| </thead> | |||
| <tbody> | |||
| <tr> | |||
| <th>167</th> | |||
| <td>304930</td> | |||
| <td>2.333333</td> | |||
| <td>unturned</td> | |||
| </tr> | |||
| <tr> | |||
| <th>168</th> | |||
| <td>304930</td> | |||
| <td>12.050000</td> | |||
| <td>unturned</td> | |||
| </tr> | |||
| <tr> | |||
| <th>169</th> | |||
| <td>304930</td> | |||
| <td>16.700000</td> | |||
| <td>unturned</td> | |||
| </tr> | |||
| <tr> | |||
| <th>170</th> | |||
| <td>304930</td> | |||
| <td>16.700000</td> | |||
| <td>unturned</td> | |||
| </tr> | |||
| <tr> | |||
| <th>171</th> | |||
| <td>304930</td> | |||
| <td>0.000000</td> | |||
| <td>unturned</td> | |||
| </tr> | |||
| <tr> | |||
| <th>...</th> | |||
| <td>...</td> | |||
| <td>...</td> | |||
| <td>...</td> | |||
| </tr> | |||
| <tr> | |||
| <th>22682</th> | |||
| <td>578080</td> | |||
| <td>51.883333</td> | |||
| <td>playerunknown's battlegrounds</td> | |||
| </tr> | |||
| <tr> | |||
| <th>22683</th> | |||
| <td>578080</td> | |||
| <td>47.616667</td> | |||
| <td>playerunknown's battlegrounds</td> | |||
| </tr> | |||
| <tr> | |||
| <th>22684</th> | |||
| <td>578080</td> | |||
| <td>30.650000</td> | |||
| <td>playerunknown's battlegrounds</td> | |||
| </tr> | |||
| <tr> | |||
| <th>22685</th> | |||
| <td>578080</td> | |||
| <td>170.083333</td> | |||
| <td>playerunknown's battlegrounds</td> | |||
| </tr> | |||
| <tr> | |||
| <th>22686</th> | |||
| <td>578080</td> | |||
| <td>399.950000</td> | |||
| <td>playerunknown's battlegrounds</td> | |||
| </tr> | |||
| </tbody> | |||
| </table> | |||
| <p>1099 rows × 3 columns</p> | |||
| </div> | |||
| ```python | |||
| ax = df1.boxplot(column=["time"], by='gamename', notch=True, vert=False) | |||
| fig = ax.get_figure() | |||
| fig.suptitle('') | |||
| ax.set_title('Play-time Distribution') | |||
| plt.xlabel("Hours Played") | |||
| ax.set_xlim([0, 2000]) | |||
| plt.ylabel("Game") | |||
| plt.savefig("playTimes.png", dpi=300, bbox_inches = "tight") | |||
| ``` | |||
|  | |||
| Overall it is fascinating to see how the distributions for different games vary. In the future, I will re-run some of these analytics with even more data and possibly put them on my website as an interactive graph. | |||