| @ -0,0 +1,400 @@ | |||
| \documentclass[12pt]{article}% | |||
| \usepackage{amsfonts} | |||
| \usepackage{fancyhdr} | |||
| \usepackage{comment} | |||
| \usepackage[a4paper, top=2.5cm, bottom=2.5cm, left=2.2cm, right=2.2cm]% | |||
| {geometry} | |||
| \usepackage{times} | |||
| \usepackage{amsmath} | |||
| \usepackage{changepage} | |||
| \usepackage{amssymb} | |||
| \usepackage{enumitem} | |||
| \usepackage{algorithm} | |||
| \usepackage[noend]{algpseudocode} | |||
| \usepackage{scrextend} | |||
| \usepackage{graphicx}% | |||
| \setcounter{MaxMatrixCols}{30} | |||
| \newtheorem{theorem}{Theorem} | |||
| \newtheorem{acknowledgement}[theorem]{Acknowledgement} | |||
| \newtheorem{algorithm}[theorem]{Algorithm} | |||
| \newtheorem{axiom}{Axiom} | |||
| \newtheorem{case}[theorem]{Case} | |||
| \newtheorem{claim}[theorem]{Claim} | |||
| \newtheorem{conclusion}[theorem]{Conclusion} | |||
| \newtheorem{condition}[theorem]{Condition} | |||
| \newtheorem{conjecture}[theorem]{Conjecture} | |||
| \newtheorem{corollary}[theorem]{Corollary} | |||
| \newtheorem{criterion}[theorem]{Criterion} | |||
| \newtheorem{definition}[theorem]{Definition} | |||
| \newtheorem{example}[theorem]{Example} | |||
| \newtheorem{exercise}[theorem]{Exercise} | |||
| \newtheorem{lemma}[theorem]{Lemma} | |||
| \newtheorem{notation}[theorem]{Notation} | |||
| \newtheorem{problem}[theorem]{Problem} | |||
| \newtheorem{proposition}[theorem]{Proposition} | |||
| \newtheorem{remark}[theorem]{Remark} | |||
| \newtheorem{solution}[theorem]{Solution} | |||
| \newtheorem{summary}[theorem]{Summary} | |||
| \newenvironment{proof}[1][Proof]{\textbf{#1.} }{\ \rule{0.5em}{0.5em}} | |||
| \newcommand{\Q}{\mathbb{Q}} | |||
| \newcommand{\R}{\mathbb{R}} | |||
| \newcommand{\C}{\mathbb{C}} | |||
| \newcommand{\Z}{\mathbb{Z}} | |||
| \documentclass{minimal} | |||
| \usepackage{mathtools} | |||
| \DeclarePairedDelimiter\ceil{\lceil}{\rceil} | |||
| \DeclarePairedDelimiter\floor{\lfloor}{\rfloor} | |||
| \begin{document} | |||
| \title{Homework 3} | |||
| \author{Jeffery Russell} | |||
| \date{\today} | |||
| \maketitle | |||
| \section{Strassen's algorithm} | |||
| \begin{enumerate}[label=(\alph*)] | |||
| \item | |||
| $$ | |||
| \begin{bmatrix} | |||
| 1 & 3\\ | |||
| 7 & 5 | |||
| \end{bmatrix} \odot | |||
| \begin{bmatrix} | |||
| 6 & 8\\ | |||
| 4 & 2 | |||
| \end{bmatrix}\\* | |||
| $$ | |||
| $S_1 = 6, S_2 = 4$\\ | |||
| $S_3 = 12, S_4 = -2$\\ | |||
| $S_5 = 5, S_6 = 8$\\ | |||
| $S_9 = -6, S_{10} = 14$\\ | |||
| \\ | |||
| $P_1 = 1*6 = 6, P_2 = 4*2 = 8$\\ | |||
| $P_3 = 6*12 = 72, P_4 = -2*5 = -10$\\ | |||
| $P_5 = 6*8 = 48, P_6 = -2*6 = -12$\\ | |||
| $P_7 = -6*14 = -84$\\ | |||
| $$ | |||
| = | |||
| \begin{bmatrix} | |||
| c_{11} & c_{12}\\ | |||
| c_{21} & c_{22} | |||
| \end{bmatrix} = | |||
| \begin{bmatrix} | |||
| (P_5 + P_4 - P_2 + P_6) & (P_1+P_2)\\ | |||
| (P_3+P_4) & (P-5+P_1 - P_3 + P_7) | |||
| \end{bmatrix} | |||
| $$ | |||
| $$ | |||
| = | |||
| \begin{bmatrix} | |||
| (48 + (-10) - 8 + (-12)) & (6 + 8)\\ | |||
| (72 + (-10)) & (48 + 6 - 72 - (-84)) | |||
| \end{bmatrix} = | |||
| \begin{bmatrix} | |||
| 18 & 14\\ | |||
| 62 & 66 | |||
| \end{bmatrix} | |||
| $$ | |||
| \item | |||
| $$ | |||
| A \odot B = | |||
| \begin{cases} | |||
| A*B & \text{if } A_{rows} = 1 \\ | |||
| \begin{bmatrix} | |||
| c_{11} & c_{12}\\ | |||
| c_{21} & c_{22} | |||
| \end{bmatrix} & \text{otherwise} | |||
| \end{cases} | |||
| $$ | |||
| Where: | |||
| $A = | |||
| \begin{bmatrix} | |||
| A_{11} & A_{12}\\ | |||
| A_{21} & A_{22} | |||
| \end{bmatrix}$ | |||
| $B = | |||
| \begin{bmatrix} | |||
| B_{11} & B_{12}\\ | |||
| B_{21} & B_{22} | |||
| \end{bmatrix}$ | |||
| $c_{11} = A_{11} \odot B_{11} + A_{12} \odot B_{21}$\\ | |||
| $c_{12} = A_{11} \odot B_{12} + A_{12} \odot B_{22}$\\ | |||
| $c_{21} = A_{21} \odot B_{11} + A_{22} \odot B_{21}$\\ | |||
| $c_{22} = A_{21} \odot B_{12} + A_{22} \odot B_{22}$ | |||
| \newpage | |||
| \begin{algorithm} | |||
| \caption{Strassen's Algorithm}\label{euclid} | |||
| \begin{algorithmic}[1] | |||
| \Procedure{Strassen(A,B):}{} | |||
| \State $\textit{n} \gets \text{number of rows in}\textit{ A}$ | |||
| \State $C \gets \textit{new n by n matrix}$ | |||
| \If {$\textit{n} = 1$} | |||
| \State $c \gets A[1][1] * B[1][1]$ | |||
| \Else{} | |||
| \State Sub partition A into 4 equal matrix quadrants A11, A12, A21, A22 | |||
| \State Sub partition B into 4 equal matrix quadrants B11, B12, B21, B22 | |||
| \State $s1 \gets B12 - B22$ | |||
| \State $s2 \gets A11 + A12$ | |||
| \State $s3 \gets A21 + A22$ | |||
| \State $s4 \gets B21 - B11$ | |||
| \State $s5 \gets A11 + A22$ | |||
| \State $s6 \gets B11 + B22$ | |||
| \State $s7 \gets A12 - A22$ | |||
| \State $s8 \gets B21 + B22$ | |||
| \State $s9 \gets A11 - A21$ | |||
| \State $s10 \gets B11 + B12$ | |||
| \State $p1 \gets Strassen(A11,S1)$ | |||
| \State $p2 \gets Strassen(S2,B22)$ | |||
| \State $p3 \gets Strassen(S3,B11)$ | |||
| \State $p4 \gets Strassen(A22,S4)$ | |||
| \State $p5 \gets Strassen(S5,S6)$ | |||
| \State $p6 \gets Strassen(S7,S8)$ | |||
| \State $p7 \gets Strassen(S9,S10)$ | |||
| \State $C[1][1] \gets p5 + p4 - p2 + p6$ | |||
| \State $C[1][2] \gets p1 + p2$ | |||
| \State $C[2][1] \gets p3 + p4$ | |||
| \State $C[2][2] \gets p5 + p1 - p3 + p7$ | |||
| \EndIf | |||
| \State \textbf{return} C | |||
| \EndProcedure | |||
| \end{algorithmic} | |||
| \end{algorithm} | |||
| \item | |||
| $T(1) = 1$\\ | |||
| $T(n) = 7T(\frac{n}{2}) + \frac{9}{2}n^2$\\ | |||
| $T(2^0) = 1$\\ | |||
| $T(2^m) = 7T(2^{m-1}) + \frac{9}{2}(2^m)^2$\\ | |||
| $= 7(7T(n^{m-2}) + \frac{9}{2}(2^{m-1})^2) + \frac{9}{2}(2^m)^2$\\ | |||
| $= 7^2T(n^{m-2}) + 7*\frac{9}{2}(2^{m-1})^2 + 7^0*\frac{9}{2}(2^m)^2$\\ | |||
| $= 7^2(7T(2^{m-3}) + \frac{9}{2}(2^{m-2})^2) + 7*\frac{9}{2}(2^{m-1})^2 + 7^0*\frac{9}{2}(2^m)^2$\\ | |||
| $= 7^3T(2^{m-3}) + 7^2\frac{9}{2}(2^{m-2})^2 + 7*\frac{9}{2}(2^{m-1})^2 + 7^0*\frac{9}{2}(2^m)^2$\\ | |||
| $= 7^kT(2^{m-k}) + 7^{(k-1)}\frac{9}{2}(2^{m-(k-1)})^2 + ... + 7^{k-k}*\frac{9}{2}(2^{m-(k-k)})^2$\\ | |||
| Let $m = k$\\ | |||
| $T(2^m)= 7^mT(2^{m-m}) + 7^{(m-1)}\frac{9}{2}(2^{m-(m-1)})^2 + ... + 7^{m-m}*\frac{9}{2}(2^{m-(m-m)})^2$\\ | |||
| $T(2^m)= 7^m + 7^{(m-1)}\frac{9}{2}(2^{1})^2 + ... + 7^{0}*\frac{9}{2}(2^{m})^2$\\ | |||
| $= 7^m + \frac{9}{2}\sum_{k=0}^{m-1}7^k(2^{m-k})^2$\\ | |||
| $= \frac{9}{2}\sum_{k=0}^{m}7^k(2^{2(m-k)}) - \frac{9}{2}7^m$\\ | |||
| $= \frac{9}{2}\sum_{k=0}^{m}7^k(2^{2m})(2^{-2k}) - \frac{9}{2}7^m$\\ | |||
| $= (2^{2m})\frac{9}{2}\sum_{k=0}^{m}7^k(2^{-2k}) - \frac{9}{2}7^m + 7^m$\\ | |||
| $= (2^{2m})\frac{9}{2}\sum_{k=0}^{m}\frac{7^k}{2^{2k}}) - \frac{7}{2}7^m$\\ | |||
| $= (2^{2m})\frac{9}{2}\sum_{k=0}^{m}(\frac{7}{4})^k - \frac{7}{2}7^m$\\ | |||
| $= (2^{2m})\frac{9}{2}(\frac{\frac{7}{4}^{m+1} -1)}{1.75-1}) - \frac{7}{2}7^m$\\ | |||
| $= (2^m)^2\frac{9}{2}\frac{4}{3}((\frac{7}{4})^{m+1}-1) - (\frac{7}{2})7^m$\\ | |||
| $= 6(2^m)^2((\frac{7}{4})^{m+1}-1) - (\frac{7}{2})7^m$\\ | |||
| $= 6(2^m)^2\frac{7}{4} - 6(2^m)^2 - (\frac{7}{2})7^m$\\ | |||
| $= \frac{21*7^m}{2} - 6(2^m)^2 - (\frac{7}{2})7^m$\\ | |||
| $= 7*7^m - 6 * 4^m$\\ | |||
| $T(n)= 7*n^{lg(7)} - 6 * n^2$\\ | |||
| $T(n) \approx 7*n^{2.81} - 6 * n^2$\\ | |||
| \item Modifying Strassen's Algorithm | |||
| To make Strassen's algorithm to work with any n x n matrix we would pad the two matrices being multiplied with zeros to become two m x m matrix where m is a power of 2. The answer would be the result but only taking out the n x n section out of the m x m product.\\ | |||
| To prove that this is still asymptotically equal we will demonstrate that at most the dimensions of the matrix being multiply double. | |||
| let m = length of new padded matrices being multiplied \\ | |||
| let n = length of original matrices being multiplied \\ | |||
| Since: | |||
| $2^{k-1} < n < 2^k = m$\\ | |||
| Note: | |||
| $2n > 2^{k+1} > m$\\ | |||
| Hence: | |||
| $T(n) \in \Theta((2n)^{lg(7)}) = \Theta(n^{lg7})$ | |||
| \item | |||
| $(a+bi)(c+di)$\\ | |||
| $= ac + adi + bci + bdi^2$\\ | |||
| $= ac + adi + bci - bd$\\ | |||
| $Real Part= ac - bd$\\ | |||
| $Imaginary Part= (a + b)(c+d) -ac - bd$\\ | |||
| Consider:\\ | |||
| $A_1 = ac$\\ | |||
| $A_2 = bd$\\ | |||
| $A_3 = (a+b)(c+d)$\\ | |||
| Then:\\ | |||
| Real Part = $A_1 - A_2$\\ | |||
| Imaginary Part = $A_3 - A_1 - A_2$\\ | |||
| \end{enumerate} | |||
| \section{Recurrence} | |||
| \begin{enumerate}[label=(\alph*)] | |||
| \item | |||
| \textbf{Lemma 1}: For any n $\in \mathbb{N}, \left\lfloor\dfrac{n+1}{2}\right\rfloor = \left\lceil\dfrac{n}{2}\right\rceil$\\ | |||
| \textbf{Proof By Cases:}\\ | |||
| \textbf{Even Case:}\\ | |||
| n can be represented as 2m for some value of m\\ | |||
| $LHS = \left\lfloor\dfrac{n+1}{2}\right\rfloor = \left\lfloor\dfrac{2m+1}{2}\right\rfloor$\\ | |||
| $=\left\lfloor m + \dfrac{1}{2}\right\rfloor = m$\\ | |||
| $RHS = \left\lceil\dfrac{n}{2}\right\rceil = \left\lceil\dfrac{2m}{2}\right\rceil$ | |||
| $=\left\lceil m \right\rceil = m = LHS$ | |||
| \textbf{Odd Case:}\\ | |||
| n can be represented as (2m + 1) for some value of m\\ | |||
| $LHS = \left\lfloor\dfrac{n+1}{2}\right\rfloor = \left\lfloor\dfrac{2m +1+1}{2}\right\rfloor$\\ | |||
| $=\left\lfloor m + 1\right\rfloor = m +1$\\ | |||
| $RHS = \left\lceil\dfrac{n}{2}\right\rceil = \left\lceil\dfrac{2m +1}{2}\right\rceil$ | |||
| $=\left\lceil m + \dfrac{1}{2} \right\rceil = m +1 = LHS$ | |||
| $\Box$\\ | |||
| \item | |||
| \textbf{Lemma 2}: For any n $\in \mathbb{N}, \left\lfloor\dfrac{n}{2}\right\rfloor + 1 = \left\lceil\dfrac{n+1}{2}\right\rceil$ | |||
| \textbf{Proof By Cases:}\\ | |||
| \textbf{Even Case:}\\ | |||
| n can be represented as 2m for some value of m\\ | |||
| $LHS = \left\lfloor\dfrac{n}{2}\right\rfloor +1= \left\lfloor\dfrac{2m}{2}\right\rfloor + 1$\\ | |||
| $=\left\lfloor m \right\rfloor = m + 1$\\ | |||
| $RHS = \left\lceil\dfrac{n + 1}{2}\right\rceil = \left\lceil\dfrac{2m + 1}{2}\right\rceil$ | |||
| $=\left\lceil m + \dfrac{1}{2} \right\rceil = m + 1 = LHS$ | |||
| \textbf{Odd Case:}\\ | |||
| n can be represented as (2m + 1) for some value of m\\ | |||
| $LHS = \left\lfloor\dfrac{n}{2}\right\rfloor + 1 = \left\lfloor\dfrac{2m + 1}{2}\right\rfloor + 1 = \left\lfloor m +\dfrac{1}{2}\right\rfloor + 1$\\ | |||
| $=\left\lfloor m \right\rfloor + 1 = m +1$\\ | |||
| $RHS = \left\lceil\dfrac{n + 1}{2}\right\rceil = \left\lceil\dfrac{2m + 1 +1}{2}\right\rceil$ | |||
| $=\left\lceil m + 1 \right\rceil = m +1 = LHS$\\ | |||
| $\Box$\\ | |||
| \item | |||
| \textbf{Let:} $T(1) = 0, T(n) = T(\left\lfloor\dfrac{n}{2}\right\rfloor) + T(\left\lceil\dfrac{n}{2}\right\rceil) + n$\\ | |||
| \textbf{Let:} $D(n) = T(n+1) - T(n)$\\ | |||
| \textbf{Lemma 3:} $D(1) = 2$\\ | |||
| \textbf{Direct Proof:}\\ | |||
| $D(1) = T(2) - T(1)$\\ | |||
| $= T(\left\lfloor\dfrac{2}{2}\right\rfloor) + T(\left\lceil\dfrac{2}{2}\right\rceil) + 2 - T(0)$\\ | |||
| $= T(1) + T(1) + 2 - T(0)$\\ | |||
| $= 2$\\ | |||
| $\Box$\\ | |||
| \textbf{Lemma 4:} $D(n) = D(\left\lfloor\dfrac{n}{2}\right\rfloor) + 1$\\ | |||
| \textbf{Direct Proof:}\\ | |||
| $D(n) = T(n+1) - T(n)$\\ | |||
| $=T(\left\lfloor\dfrac{n + 1}{2}\right\rfloor) + T(\left\lceil\dfrac{n + 1}{2}\right\rceil) + (n+1) - T(n)$\\ | |||
| $=T(\left\lceil\dfrac{n}{2}\right\rceil) + T(\left\lfloor\dfrac{n}{2}\right\rfloor + 1) + (n+1) - T(n)$ \textit{by lemma 1, 2}\\ | |||
| $=T(\left\lceil\dfrac{n}{2}\right\rceil) + T(\left\lfloor\dfrac{n}{2}\right\rfloor + 1) + (n+1) - T(\left\lfloor\dfrac{n}{2}\right\rfloor) - T(\left\lceil\dfrac{n}{2}\right\rceil) - n$\\ | |||
| $=T(\left\lfloor\dfrac{n}{2}\right\rfloor + 1) - T(\left\lfloor\dfrac{n}{2}\right\rfloor) +1$\\ | |||
| $= D(\left\lfloor\dfrac{n}{2}\right\rfloor) + 1$\\ | |||
| $\Box$\\ | |||
| \item | |||
| \textbf{Lemma 5:} For any $n \in \mathbb{N}$, if $n > 1$ and n is even then :\\ | |||
| $\left\lfloor lg(\left\lfloor\dfrac{n}{2}\right\rfloor)\right\rfloor = \left\lfloor\ lg(n) -1\right\rfloor$\\ | |||
| \textbf{Direct Proof:}\\ | |||
| Suppose that n is even:\\ | |||
| $\left\lfloor lg(\left\lfloor\dfrac{n}{2}\right\rfloor)\right\rfloor = \left\lfloor lg(\left\dfrac{n}{2}\right)\right\rfloor$ \textit{since n is even}\\ | |||
| $= \left\lfloor lg(n) - lg(2)\right\rfloor$\\ | |||
| $= \left\lfloor lg(n) - 1\right\rfloor$\\ | |||
| $= \left\lfloor lg(n)\right\rfloor -1$\\ | |||
| $\Box$\\ | |||
| \textbf{Lemma 6:} For any $m \in \mathbb{N}$, if $m > 0$ then:\\ | |||
| $\left\lfloor lg(\left\lfloor 2m+1 \right\rfloor)\right\rfloor = \left\lfloor\ lg(2m)\right\rfloor$\\ | |||
| \textbf{Direct Proof:}\\ | |||
| Let $k = \left\lfloor lg(\left\lfloor 2m+1 \right\rfloor)\right\rfloor$\\ | |||
| $\left\lfloor lg(\left\lfloor 2m+1 \right\rfloor)\right\rfloor = k \xrightarrow[]{} k \leq lg(2m + 1) < k + 1$\\ | |||
| $\xrightarrow[]{} 2^k \leq 2m+1 < 2^{k+1}$\\ | |||
| $\xrightarrow{} 2^{k} -1 \leq 2m < 2^{k+1} -1 \textit{by transitivity}$\\ | |||
| $\xrightarrow{} 2^k -1 \leq 2m < 2^{k+1}$\\ | |||
| $\xrightarrow[]{} 2^k \leq 2m < 2^{k+1}$\textit{Since 2m is even}\\ | |||
| $\xrightarrow{} k \leq lg(2m) < k + 1$\\ | |||
| $\xrightarrow{}\left\lfloor\ lg(2m)\right\rfloor = k$\\ | |||
| $\Box$\\ | |||
| \textbf{Lemma 7:} For any $n \in \mathbb{N}$, if $n > 1$ and n is odd then :\\ | |||
| $\left\lfloor lg(\left\lfloor\dfrac{n}{2}\right\rfloor)\right\rfloor = \left\lfloor\ lg(n) -1\right\rfloor$\\ | |||
| \textbf{Direct Proof:}\\ | |||
| $\left\lfloor lg(\left\lfloor\dfrac{n}{2}\right\rfloor)\right\rfloor = \left\lfloor\ lg(\dfrac{n-1}{2})\right\rfloor$\textit{Gets an even number since n is odd}\\ | |||
| $= \left\lfloor\ lg(n-1) - lg(2)\right\rfloor$\\ | |||
| $= \left\lfloor\ lg(n-1) - 1\right\rfloor$\\ | |||
| $= \left\lfloor\ lg(n-1)\right\rfloor -1$\\ | |||
| $= \left\lfloor\ lg(n)\right\rfloor -1$\textit{By lemma 6}\\ | |||
| $\Box$\\ | |||
| \textbf{Corollary 1:} | |||
| By lemmas 5 and 7, for any $n \in \mathbb{N}$, if $n > 1$ then :\\ | |||
| $\left\lfloor lg(\left\lfloor\dfrac{n}{2}\right\rfloor)\right\rfloor = \left\lfloor\ lg(n) -1\right\rfloor$\\ | |||
| \textbf{Lemma 8:} For any for any $n \in \mathbb{N}$, if $n > 1$ then $D(n) = \left\lfloor\ lg(n)\right\rfloor +2$\\ | |||
| \textbf{Proof via Strong Induction:}\\ | |||
| \textbf{base case: n =1}\\ | |||
| $D(1) = 2$ \textit{lemma 3}\\ | |||
| $D(1) = \left\lfloor\ lg(1)\right\rfloor +2$\\ | |||
| $= 0 + 2 = 2$\\ | |||
| \textbf{Inductive Step:} Assume proposition holds up to but not including n.\\ Show that n follows.\\ | |||
| $D(n) = D(\left\lfloor\dfrac{n}{2} \right\rfloor) +1$\\ | |||
| $= \left\lfloor lg(\left\lfloor \dfrac{n}{2}\right\rfloor)\right\rfloor + 2 + 1$\textit{ By I.H}\\ | |||
| $=\left\lfloor\ lg(n)\right\rfloor -1 + 2 + 1$ \textit{ Corollary 1}\\ | |||
| $=\left\lfloor\ lg(n)\right\rfloor +2$\\ | |||
| $\Box$\\ | |||
| \item | |||
| \textbf{Lemma 9:} $T(n) - T(1) = \sum^{n-1}_{k = 1}D(k)$\\ | |||
| \textbf{Direct Proof:}\\ | |||
| $\sum^{n-1}_{k = 1}D(k) = D(1) + D(2) + D(3) + ... + D(n-3) + D(n-2) + D(n-1)$\\ | |||
| $= T(2) - T(1) + T(3) - T(2) + T(4) - T(3) +\\ ... + T(n-2) - T(n-3) + T(n-1) - T(n-2) + T(n) - T(n-1)$\\ | |||
| $=T(n)-T(1)$\textit{Due to cancellations}\\ | |||
| $\Box$\\ | |||
| \textbf{Corollary 2:}\\ | |||
| By lemmas 9 and 8, $T(n) = \sum^{n-1}_{k = 1}\left\lfloor\ (lg(n) + 2)\right\rfloor$\\ | |||
| \item | |||
| \textbf{Lemma 10:} $T(n) \in O(nlog(n))$\\ | |||
| $T(n) = \sum^{n-1}_{k = 1}\left\lfloor\ (lg(n) + 2)\right\rfloor$\\ | |||
| $= \sum^{n-1}_{k = 1}\left\lfloor\ (lg(n))\right\rfloor + \sum^{n-1}_{k = 1}2$\\ | |||
| $\leq nlg(n) + 2n$\\ | |||
| $\xrightarrow[]{} T(n) \in O(nlog(n))$\\ | |||
| $\Box$\\ | |||
| \end{enumerate} | |||
| \end{document} | |||