datafest competition 2019
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

33 lines
1.1 KiB

import numpy as np
import pandas as pd
def join_cols():
# Reads in csv files to be manipulated
dfg = pd.read_csv('data_preparation/data/games_ranked.csv')
# Creates the new dataframe where each date is a unique column, and gets the number of dates
unique_dates = pd.DataFrame(dfg["Date"].unique()).to_numpy()
unique_rows = unique_dates.shape[0]
daily_elos = np.array(unique_rows).astype(float)
print(unique_rows)
# Creates two numpy arrays to perform some operations on
dates = dfg["Date"].to_numpy()
e_change = dfg["eloChangeAdjusted"].to_numpy()
rows = dates.shape()[0]
# sums up the elo change on a given day and then exports it to a unique .csv file
x = 0
for i in range(0, rows):
if not (dates[i] == unique_dates[x]):
x = x + 1
daily_elos[x] = daily_elos[x] + e_change[i]
# Creates a new dataframe from the two unique date array and the daily elo change array
df_dec = pd.DataFrame()
df_dec["Date"] = unique_dates
df_dec["DailyElo"] = daily_elos
print(df_dec)