import tensorflow as tf
|
|
import pandas as pd
|
|
import numpy as np
|
|
from sklearn.metrics import r2_score
|
|
|
|
|
|
def r2_(y, pred):
|
|
ybar = np.sum(y) / len(y)
|
|
ssreg = np.sum((pred - ybar)**2)
|
|
sstot = np.sum((y - ybar)**2)
|
|
return ssreg/sstot
|
|
|
|
|
|
def time_series_sigmoid_classification(dataset, k, n0, x_columns, y_columns):
|
|
inp = dataset[x_columns]
|
|
out = dataset[y_columns]
|
|
col = "day"
|
|
x = []
|
|
y = []
|
|
input_shape = 0
|
|
output_shape = 0
|
|
for player in out["playerID"].unique():
|
|
XPlayer = inp[inp["playerID"] == player]
|
|
YPlayer = out[out["playerID"] == player]
|
|
for day in YPlayer[col][n0 - 1:]:
|
|
prev = day - k
|
|
xprev = XPlayer[XPlayer[col] == prev].drop(columns=[col, "playerID"]).to_numpy()
|
|
if xprev.shape[0] != 1:
|
|
continue
|
|
else:
|
|
xprev = xprev[0, :]
|
|
yt = YPlayer[YPlayer[col] == day].drop(columns=[col, "playerID"]).to_numpy()[0, :]
|
|
if input_shape == 0:
|
|
input_shape = xprev.shape[0]
|
|
else:
|
|
if input_shape != xprev.shape[0]:
|
|
print("INCONSISTENT INPUT DIMENSION")
|
|
exit(2)
|
|
if output_shape == 0:
|
|
output_shape = yt.shape[0]
|
|
else:
|
|
if output_shape != yt.shape[0]:
|
|
print("INCONSISTENT OUTPUT DIMENSION")
|
|
exit(2)
|
|
x.append(xprev)
|
|
y.append(yt)
|
|
x = np.array(x)
|
|
y = np.array(y)
|
|
model = tf.keras.Sequential([
|
|
tf.keras.layers.Flatten(input_shape=[input_shape]),
|
|
tf.keras.layers.Dense(output_shape, activation=tf.nn.softmax)
|
|
])
|
|
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy', 'categorical_accuracy'])
|
|
model.fit(x, y, epochs=50)
|
|
loss, accuracy = model.evaluate(x, y)
|
|
print(loss, accuracy)
|
|
return model.get_weights()
|
|
|
|
|
|
def time_series_dnn_classification(dataset, k, n0, x_columns, y_columns):
|
|
inp = dataset[x_columns]
|
|
out = dataset[y_columns]
|
|
col = "day"
|
|
x = []
|
|
y = []
|
|
input_shape = 0
|
|
output_shape = 0
|
|
for player in out["playerID"].unique():
|
|
XPlayer = inp[inp["playerID"] == player]
|
|
YPlayer = out[out["playerID"] == player]
|
|
for day in YPlayer[col][n0 - 1:]:
|
|
prev = day - k
|
|
xprev = XPlayer[XPlayer[col] == prev].drop(columns=[col, "playerID"]).to_numpy()
|
|
if xprev.shape[0] != 1:
|
|
continue
|
|
else:
|
|
xprev = xprev[0, :]
|
|
yt = YPlayer[YPlayer[col] == day].drop(columns=[col, "playerID"]).to_numpy()[0, :]
|
|
if input_shape == 0:
|
|
input_shape = xprev.shape[0]
|
|
else:
|
|
if input_shape != xprev.shape[0]:
|
|
print("INCONSISTENT INPUT DIMENSION")
|
|
exit(2)
|
|
if output_shape == 0:
|
|
output_shape = yt.shape[0]
|
|
else:
|
|
if output_shape != yt.shape[0]:
|
|
print("INCONSISTENT OUTPUT DIMENSION")
|
|
exit(2)
|
|
x.append(xprev)
|
|
y.append(yt)
|
|
x = np.array(x)
|
|
y = np.array(y)
|
|
model = tf.keras.Sequential([
|
|
tf.keras.layers.Dense(32, input_dim=input_shape,activation=tf.nn.softmax),
|
|
tf.keras.layers.Dense(output_shape, activation=tf.nn.softmax)
|
|
])
|
|
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy', 'categorical_accuracy'])
|
|
print(output_shape)
|
|
model.fit(x, y, epochs=50)
|
|
loss, accuracy = model.evaluate(x, y)
|
|
print(x.shape)
|
|
print(y.shape)
|
|
print(loss, accuracy)
|
|
return model.get_weights()
|
|
|
|
def time_series_linear_regression(dataset, k, n0, x_columns, y_columns):
|
|
inp = dataset[x_columns]
|
|
out = dataset[y_columns]
|
|
col = "day"
|
|
x = []
|
|
y = []
|
|
input_shape = 0
|
|
output_shape = 0
|
|
for player in out["playerID"].unique():
|
|
XPlayer = inp[inp["playerID"] == player]
|
|
YPlayer = out[out["playerID"] == player]
|
|
for day in YPlayer[col][n0 - 1:]:
|
|
prev = day - k
|
|
xprev = XPlayer[XPlayer[col] == prev].drop(columns=[col, "playerID"]).to_numpy()
|
|
if xprev.shape[0] != 1:
|
|
continue
|
|
else:
|
|
xprev = xprev[0, :]
|
|
yt = YPlayer[YPlayer[col] == day].drop(columns=[col, "playerID"]).to_numpy()[0, :]
|
|
if input_shape == 0:
|
|
input_shape = xprev.shape[0]
|
|
else:
|
|
if input_shape != xprev.shape[0]:
|
|
print("INCONSISTENT INPUT DIMENSION")
|
|
exit(2)
|
|
if output_shape == 0:
|
|
output_shape = yt.shape[0]
|
|
else:
|
|
if output_shape != yt.shape[0]:
|
|
print("INCONSISTENT OUTPUT DIMENSION")
|
|
exit(2)
|
|
x.append(xprev)
|
|
y.append(yt)
|
|
x = np.array(x)
|
|
y = np.array(y)
|
|
model = tf.keras.Sequential([
|
|
tf.keras.layers.Flatten(input_shape=[input_shape]),
|
|
tf.keras.layers.Dense(output_shape)
|
|
])
|
|
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy'])
|
|
model.fit(x, y, epochs=50)
|
|
loss, _ = model.evaluate(x, y)
|
|
print(loss)
|
|
pred = model.predict(x)
|
|
r2 = r2_(y, pred)
|
|
print(r2)
|
|
return model.get_weights()
|
|
|
|
|
|
def time_series_dnn_regressions(dataset, k, n0, x_columns, y_columns):
|
|
inp = dataset[x_columns]
|
|
out = dataset[y_columns]
|
|
col = "day"
|
|
x = []
|
|
y = []
|
|
input_shape = 0
|
|
output_shape = 0
|
|
for player in out["playerID"].unique():
|
|
XPlayer = inp[inp["playerID"] == player]
|
|
YPlayer = out[out["playerID"] == player]
|
|
for day in YPlayer[col][n0 - 1:]:
|
|
prev = day - k
|
|
xprev = XPlayer[XPlayer[col] == prev].drop(columns=[col, "playerID"]).to_numpy()
|
|
if xprev.shape[0] != 1:
|
|
continue
|
|
else:
|
|
xprev = xprev[0, :]
|
|
yt = YPlayer[YPlayer[col] == day].drop(columns=[col, "playerID"]).to_numpy()[0, :]
|
|
if input_shape == 0:
|
|
input_shape = xprev.shape[0]
|
|
else:
|
|
if input_shape != xprev.shape[0]:
|
|
print("INCONSISTENT INPUT DIMENSION")
|
|
exit(2)
|
|
if output_shape == 0:
|
|
output_shape = yt.shape[0]
|
|
else:
|
|
if output_shape != yt.shape[0]:
|
|
print("INCONSISTENT OUTPUT DIMENSION")
|
|
exit(2)
|
|
x.append(xprev)
|
|
y.append(yt)
|
|
x = np.array(x)
|
|
y = np.array(y)
|
|
model = tf.keras.Sequential([
|
|
tf.keras.layers.Flatten(input_shape=[input_shape]),
|
|
tf.keras.layers.Dense(32, activation=tf.nn.softmax),
|
|
tf.keras.layers.Dense(output_shape)
|
|
])
|
|
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy'])
|
|
model.fit(x, y, epochs=50)
|
|
loss, accuracy = model.evaluate(x, y)
|
|
print(loss, accuracy)
|
|
pred = model.predict(x)
|
|
r2 = r2_(y, pred)
|
|
print(r2)
|
|
return model.get_weights()
|
|
|
|
|
|
def main():
|
|
filename = "personal.csv"
|
|
df = pd.read_csv(filename)
|
|
x = ["day", "playerID", "fatigueSliding"]
|
|
y = ["day", "playerID", "BestOutOfMyselfAbsolutely", "BestOutOfMyselfSomewhat", "BestOutOfMyselfNotAtAll", "BestOutOfMyselfUnknown"]
|
|
k = 0
|
|
n0 = 30
|
|
weights = time_series_dnn_classification(df, k, n0, x, y)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|