import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
|
|
class Net(nn.Module):
|
|
def __init__(self, input_shape):
|
|
super().__init__()
|
|
self.fc1 = nn.Linear(input_shape, 8)
|
|
self.fc2 = nn.Linear(8, 4)
|
|
|
|
def forward(self, x):
|
|
x = torch.sigmoid(self.fc1(x))
|
|
return self.fc2(x)
|
|
|
|
|
|
def get_argmax(array):
|
|
max = 0
|
|
index = 0
|
|
for i in range(len(array)):
|
|
if array[i] > max:
|
|
max = array[i]
|
|
index = i
|
|
|
|
return [index]
|
|
|
|
|
|
def get_trainset(dataset, k, n0, x_columns, y_columns):
|
|
inp = dataset[x_columns]
|
|
out = dataset[y_columns]
|
|
col = "day"
|
|
x = []
|
|
y = []
|
|
input_shape = 0
|
|
output_shape = 0
|
|
for player in out["playerID"].unique():
|
|
XPlayer = inp[inp["playerID"] == player]
|
|
YPlayer = out[out["playerID"] == player]
|
|
for day in YPlayer[col][n0 - 1:]:
|
|
prev = day - k
|
|
xprev = XPlayer[XPlayer[col] == prev].drop(columns=[col, "playerID"]).to_numpy()
|
|
if xprev.shape[0] != 1:
|
|
continue
|
|
else:
|
|
xprev = xprev[0, :]
|
|
yt = YPlayer[YPlayer[col] == day].drop(columns=[col, "playerID"]).to_numpy()[0, :]
|
|
if input_shape == 0:
|
|
input_shape = xprev.shape[0]
|
|
else:
|
|
if input_shape != xprev.shape[0]:
|
|
print("INCONSISTENT INPUT DIMENSION")
|
|
exit(2)
|
|
if output_shape == 0:
|
|
output_shape = yt.shape[0]
|
|
else:
|
|
if output_shape != yt.shape[0]:
|
|
print("INCONSISTENT OUTPUT DIMENSION")
|
|
exit(2)
|
|
x.append(xprev)
|
|
y.append(yt)
|
|
|
|
x = torch.FloatTensor(x)
|
|
y = torch.LongTensor(y)
|
|
return x, y
|
|
|
|
|
|
def time_series_sigmoid_classification(steps, dataset, k, n0, x_columns, y_columns):
|
|
net = Net(1)
|
|
optimizer = optim.Adam(net.parameters(), lr=.001)
|
|
loss = nn.CrossEntropyLoss()
|
|
|
|
for step in range(steps):
|
|
optimizer.zero_grad()
|
|
|
|
x, y = get_trainset(dataset, k, n0, x_columns, y_columns)
|
|
pred = net(x)
|
|
net_loss = loss(pred, torch.max(y, 1)[1])
|
|
net_loss.backward()
|
|
optimizer.step()
|
|
|
|
print("Loss at Step {}: {}".format(step, net_loss))
|
|
|
|
x, y = get_trainset(dataset, k, n0, x_columns, y_columns)
|
|
accuracy(net, x, y)
|
|
|
|
|
|
def accuracy(net, x, y):
|
|
pred = net(x)
|
|
pred = pred.detach().numpy()
|
|
|
|
total = len(pred)
|
|
correct = 0
|
|
for i in range(len(pred)):
|
|
equal = True
|
|
for j in range(len(pred[i])):
|
|
if pred[i][j] != y[i][j]:
|
|
equal = False
|
|
if equal:
|
|
correct += 1
|
|
|
|
accuracy = (correct / total) * 100
|
|
print("Accuracy for set: {}%".format(accuracy))
|
|
torch.save(net, "model.ckpt")
|
|
|
|
|
|
def main():
|
|
filename = "personal.csv"
|
|
df = pd.read_csv(filename)
|
|
x = ["day", "playerID", "fatigueSliding"]
|
|
y = ["day", "playerID", "BestOutOfMyselfAbsolutely", "BestOutOfMyselfSomewhat", "BestOutOfMyselfNotAtAll", "BestOutOfMyselfUnknown"]
|
|
time_series_sigmoid_classification(100, df, 0, 30, x, y)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|