datafest competition 2019
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

124 lines
3.3 KiB

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import pandas as pd
class Net(nn.Module):
def __init__(self, input_shape):
super().__init__()
self.fc1 = nn.Linear(input_shape, 8)
self.fc2 = nn.Linear(8, 4)
def forward(self, x):
x = torch.sigmoid(self.fc1(x))
return self.fc2(x)
def get_argmax(array):
max = 0
index = 0
for i in range(len(array)):
if array[i] > max:
max = array[i]
index = i
one_hot = [0,0,0,0]
one_hot[index] = 1
return one_hot
def get_trainset(dataset, k, n0, x_columns, y_columns):
inp = dataset[x_columns]
out = dataset[y_columns]
col = "day"
x = []
y = []
input_shape = 0
output_shape = 0
for player in out["playerID"].unique():
XPlayer = inp[inp["playerID"] == player]
YPlayer = out[out["playerID"] == player]
for day in YPlayer[col][n0 - 1:]:
prev = day - k
xprev = XPlayer[XPlayer[col] == prev].drop(columns=[col, "playerID"]).to_numpy()
if xprev.shape[0] != 1:
continue
else:
xprev = xprev[0, :]
yt = YPlayer[YPlayer[col] == day].drop(columns=[col, "playerID"]).to_numpy()[0, :]
if input_shape == 0:
input_shape = xprev.shape[0]
else:
if input_shape != xprev.shape[0]:
print("INCONSISTENT INPUT DIMENSION")
exit(2)
if output_shape == 0:
output_shape = yt.shape[0]
else:
if output_shape != yt.shape[0]:
print("INCONSISTENT OUTPUT DIMENSION")
exit(2)
x.append(xprev)
y.append(yt)
x = torch.FloatTensor(x)
y = torch.LongTensor(y)
return x, y
def time_series_sigmoid_classification(steps, dataset, k, n0, x_columns, y_columns):
net = Net(1)
optimizer = optim.Adam(net.parameters(), lr=.001)
loss = nn.CrossEntropyLoss()
x, y = get_trainset(dataset, k, n0, x_columns, y_columns)
accuracy(net, x, y)
for step in range(steps):
optimizer.zero_grad()
x, y = get_trainset(dataset, k, n0, x_columns, y_columns)
pred = net(x)
net_loss = loss(pred, torch.max(y, 1)[1])
net_loss.backward()
optimizer.step()
print("Loss at Step {}: {}".format(step, net_loss))
x, y = get_trainset(dataset, k, n0, x_columns, y_columns)
accuracy(net, x, y)
def accuracy(net, x, y):
pred = net(x)
pred = pred.detach().numpy()
for row in range(len(pred)):
pred[row] = get_argmax(pred[row])
total = len(pred)
correct = 0
for i in range(len(pred)):
equal = True
for j in range(len(pred[i])):
if pred[i][j] != y[i][j]:
equal = False
if equal:
correct += 1
accuracy = (correct / total) * 100
print("Accuracy for set: {}%".format(accuracy))
torch.save(net, "model.ckpt")
def main():
filename = "personal.csv"
df = pd.read_csv(filename)
x = ["day", "playerID", "fatigueSliding"]
y = ["day", "playerID", "BestOutOfMyselfAbsolutely", "BestOutOfMyselfSomewhat", "BestOutOfMyselfNotAtAll", "BestOutOfMyselfUnknown"]
time_series_sigmoid_classification(2, df, 0, 30, x, y)
if __name__ == '__main__':
main()