# Look at data
|
|
|
|
|
|
|
|
library(tidyverse)
|
|
|
|
gpsData <- read.csv("data/gps.csv")
|
|
|
|
|
|
gpsDataTibble <- as_tibble(gpsData)
|
|
|
|
|
|
|
|
|
|
workingTibble <- head(gpsDataTibble, 100000)
|
|
|
|
|
|
playerIds <-unique(workingTibble$PlayerID)
|
|
|
|
|
|
gameIds <- unique(workingTibble$GameID)
|
|
|
|
|
|
playerIDMetrics <- c()
|
|
gameIDMetrics <- c()
|
|
averageSpeed <- c()
|
|
|
|
accelDistance <- c()
|
|
|
|
|
|
for(playerID in playerIds)
|
|
{
|
|
for(gameID in gameIds)
|
|
{
|
|
cat(playerID, gameID , '\n', sep=" ")
|
|
speedTibble <- subset(workingTibble, GameID == gameID & PlayerID == playerID)
|
|
|
|
|
|
# crunch average speed
|
|
averageSpeed <- c(averageSpeed, mean(speedTibble$Speed))
|
|
|
|
# average for accel value
|
|
|
|
accelDistance <- c(accelDistance, mean(sqrt(speedTibble$AccelX^2 + speedTibble$AccelY^2 + speedTibble$AccelZ^ 2)))
|
|
|
|
|
|
#xAccel <- c(xAccel, mean(speedTibble$AccelX))
|
|
#yAccel <- c(yAccel, mean(speedTibble$AccelY))
|
|
#zAccel <- c(zAccel, mean(speedTibble$AccelZ))
|
|
|
|
|
|
# game and player id to vector
|
|
playerIDMetrics <- c(playerIDMetrics, playerID)
|
|
gameIDMetrics <- c(gameIDMetrics, gameID)
|
|
}
|
|
}
|
|
|
|
|
|
plot(accelDistance, averageSpeed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rpeData <- read.csv("./data/rpe.csv")
|
|
rpeDataTibble <- as_tibble(rpeData)
|
|
|
|
|
|
gameData <- read.csv("./data/game.csv")
|
|
gameDataTibble <- as_tibble(gameData)
|
|
|
|
|
|
wellnessData <- read.csv("./data/wellness.csv")
|
|
wellnessDataTibble <- as_tibble(wellnessData)
|
|
|
|
head(gpsData)
|