datafest competition 2019
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

303 lines
9.2 KiB

source("readData.R")
source("exponentialSmoothing.R")
library(tidyverse)
RPEData <-readNArpeData()
wellnessData <- readWellnessData()
normalizedWellnessData <- readNormalizedMetrics()
RPEData
playerIDS <- playerIds <-unique(RPEData$PlayerID)
numDays <- max(RPEData$TimeSinceAugFirst)
dayList <- 0:numDays
dayCol <- c()
playerid <- c()
dailyLoadCol <- c()
acuteChronicRatioCol <- c()
trainDuration <- c()
sleepHoursCol <- c()
fatigueRawCol <- c()
sleepQualityCol <- c()
sorenessCol <- c()
normFatCol <-c()
normSoreCol <- c()
normSleepHours <- c()
normSleepQuality <- c()
notatAllCol <- c()
absCol <-c()
somewhatCol <- c()
unknownCol <- c()
desireCol <- c()
for(day in dayList)
{
for(id in playerIDS)
{
cat("Player:", id, "Day:", day, "\n", sep=" ")
trainDay <- subset(RPEData, TimeSinceAugFirst == day & PlayerID == id)
#workLoad <- c(workLoad, sum(daylyActivities$SessionLoad, na.rm = T))
wellnessDay <- subset(wellnessData, TimeSinceAugFirst == day & PlayerID == id)
normalizedDay <- subset(normalizedWellnessData, TimeSinceAugFirst == day & playerID == id)
#if(length(normalizedDay$playerID) > 0)
#{
# print("good")
#}
dayCol <- c(dayCol, day)
playerid <- c(playerid, id)
if(length(wellnessDay$SleepHours) > 0)
{
desireCol <- c(desireCol, wellnessDay$Desire)
fatigueRawCol <- c(fatigueRawCol, mean(wellnessDay$Fatigue, na.rm =T))
sleepQualityCol <- c(sleepQualityCol, mean(wellnessDay$SleepQuality, na.rm = T))
sleepHoursCol <- c(sleepHoursCol, sum(wellnessDay$SleepHours, na.rm = T))
sorenessCol <- c(sorenessCol, mean(wellnessDay$Soreness, na.rm = T))
}
else
{
desireCol <- c(desireCol, median(wellnessData$Desire))
sleepQualityCol <- c(sleepQualityCol, median(wellnessData$SleepQuality, na.rm = T))
sleepHoursCol <- c(sleepHoursCol, median(wellnessData$SleepHours))
fatigueRawCol <- c(fatigueRawCol, median(wellnessData$Fatigue))
sorenessCol <- c(sorenessCol, median(wellnessData$Soreness))
}
if(length(normalizedDay$normSoreness) > 0)
{
normFatCol <- c(normFatCol, mean(normalizedDay$normFatigue, na.rm=T))
normSoreCol <- c(normSoreCol, mean(normalizedDay$normSoreness, na.rm = T))
normSleepHours <- c(normSleepHours, mean(normalizedDay$normSleepHours, na.rm =T))
normSleepQuality <- c(normSleepQuality, mean(normalizedDay$normSleepQuality, na.rm=T))
}
else
{
normFatCol <- c(normFatCol, mean(normalizedWellnessData$normFatigue, na.rm=T))
normSoreCol <- c(normSoreCol, mean(normalizedWellnessData$normSoreness, na.rm = T))
normSleepHours <- c(normSleepHours, mean(normalizedWellnessData$normSleepHours, na.rm =T))
normSleepQuality <- c(normSleepQuality, mean(normalizedWellnessData$normSleepQuality, na.rm=T))
}
if(length(trainDay$SessionLoad) > 0)
{
dailyLoadCol <- c(dailyLoadCol, mean(trainDay$DailyLoad,na.rm = T))
acuteChronicRatioCol <- c(acuteChronicRatioCol, mean(trainDay$AcuteChronicRatio, na.rm =T))
trainDuration <- c(trainDuration, sum(trainDay$Duration, na.rm = T))
notatAllCol <- c(notatAllCol, max(trainDay$BestOutOfMyselfNotAtAll))
absCol <- c(absCol, max(trainDay$BestOutOfMyselfAbsolutely))
somewhatCol <- c(somewhatCol, max(trainDay$BestOutOfMyselfSomewhat))
unknownCol <- c(unknownCol, max(trainDay$BestOutOfMyselfUnknown))
}
else
{
dailyLoadCol <- c(dailyLoadCol, 0)
acuteChronicRatioCol <- c(acuteChronicRatioCol, 0)
trainDuration <- c(trainDuration, 0)
notatAllCol <- c(notatAllCol, 0)
absCol <- c(absCol, 0)
somewhatCol <- c(somewhatCol, 0)
unknownCol <- c(unknownCol, 1)
}
}
}
dailyLoadCol[is.na(dailyLoadCol)] <- 0
acuteChronicRatioCol[is.na(acuteChronicRatioCol)] <- 0
accuteFatigueSliding <- slidingWindowSmooth(acuteChronicRatioCol)
massiveTibble <- tibble(day = dayCol,
playerID = playerid,
DailyLoad = dailyLoadCol,
DailyLoadSliding = slidingWindowSmooth(DailyLoad),
acuteChronicRatio = acuteChronicRatioCol,
acuteChronicRatioSliding = slidingWindowSmooth(acuteChronicRatioCol),
trainDuration = trainDuration,
trainDurationSliding = slidingWindowSmooth(trainDuration),
sleepHours = sleepHoursCol,
sleepHoursSliding = slidingWindowSmooth(sleepHours),
fatigue = fatigueRawCol,
fatigueSliding = slidingWindowSmooth(fatigue),
sleepQuality = sleepQualityCol,
soreness = sorenessCol,
sorenessSliding = slidingWindowSmooth(soreness),
fatigueNorm = normFatCol,
fatigueNormSliding = slidingWindowSmooth(fatigueNorm),
sorenessNorm = normSoreCol,
sleepHoursNorm = normSleepHours,
sleepQualityNorm = normSleepQuality,
BestOutOfMyselfNotAtAll = notatAllCol,
BestOutOfMyselfAbsolutely = absCol,
BestOutOfMyselfSomewhat = somewhatCol,
BestOutOfMyselfUnknown = unknownCol,
desire = desireCol)
write.csv(massiveTibble, "cleaned/personal.csv")
library(devtools)
source_gist("524eade46135f6348140")
## Mini Graphs
library(devtools)
source_gist("524eade46135f6348140")
# first section
ggplot(data = massiveTibble, aes(x = DailyLoad, y = fatigueNorm, label=sorenessNorm)) +
stat_smooth_func(geom="text",method="lm",hjust=0,vjust=-2,parse=TRUE) +
geom_smooth(method="lm",se=FALSE) +
labs(x = "Daily Load", y = "Normalized Fatigue Sccore")+
theme_bw() +
ylim(-6,4) +
ggtitle("Daily Work Load vs Fatigue") +
geom_point()
ggplot(data = massiveTibble, aes(x = acuteChronicRatioSliding, y = fatigueNorm, label=sorenessNorm)) +
stat_smooth_func(geom="text",method="lm",hjust=0,vjust=-2,parse=TRUE) +
geom_smooth(method="lm",se=FALSE) +
labs(x = "Acute Chronic Ratio Smoothed Data", y = "Normalized Fatigue Sccore")+
theme_bw() +
ylim(-6,4) +
geom_point() +
ggtitle("Acute Chronic Ratio vs Fatigue")
# Second section
ggplot(data = massiveTibble, aes(x = sleepHoursNorm, y = fatigueNorm, label=sorenessNorm)) +
stat_smooth_func(geom="text",method="lm",hjust=0,vjust=-2,parse=TRUE) +
geom_smooth(method="lm",se=FALSE) +
labs(x = "Normalized Hours of Sleep", y = "Normalized Fatigue Sccore")+
theme_bw() +
ylim(-6,4) +
ggtitle("Hours of Sleep vs Fatigue") +
geom_point()
ggplot(data = massiveTibble, aes(x = sorenessNorm, y = fatigueNorm, label=sorenessNorm)) +
stat_smooth_func(geom="text",method="lm",hjust=0,vjust=-2,parse=TRUE) +
geom_smooth(method="lm",se=FALSE) +
labs(x = "Normalized Soreness", y = "Normalized Fatigue Sccore")+
theme_bw() +
ylim(-6,4) +
ggtitle("Soreness vs Fatigue") +
geom_point()
ggplot(data = massiveTibble) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Team's Percieved Fatigue") +
geom_point(mapping = aes(x=day, y=sorenessSliding)) +
labs(x = "Days Since August First 2017", y = "Accute Fatugue ")+
theme_bw() +
stat_smooth_func(geom="text",method="lm",hjust=0,parse=TRUE) +
geom_smooth(method="lm",se=FALSE) +
geom_point() + facet_wrap(~class)
ggplot(data = massiveTibble) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Normalized Soreness Box Plots") +
geom_boxplot(na.rm = T, mapping = aes(y=sorenessNorm, group = playerID), outlier.colour = "red", outlier.shape = 1) +
labs(group = "Player ID", y = "Normalized Soreness Values") +
coord_flip() +
theme_bw()
ggplot(data = massiveTibble) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Normalized Sleep Quality Box Plots") +
geom_boxplot(na.rm = T, mapping = aes(y=sleepQualityNorm, group = playerID), outlier.colour = "red", outlier.shape = 1) +
labs(group = "Player ID", y = "Normalized Sleep Quality") +
coord_flip() +
theme_bw()
ggplot(data = massiveTibble) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Soreness Box Plots") +
geom_boxplot(na.rm = T, mapping = aes(y=sleepQuality, group = playerID), outlier.colour = "red", outlier.shape = 1) +
labs(group = "Player ID", y = "Sleep Quality") +
coord_flip() +
theme_bw()
ggplot(data = massiveTibble) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Team's Percieved Fatigue") +
geom_point(mapping = aes(x=day, y=fatigueNormSliding)) +
labs(x = "Days Since August First 2017", y = "Teams Fatigue")+
theme_bw()
ggplot(data = massiveTibble) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Team's Percieved Fatigue") +
geom_point(mapping = aes(x=day, y=sorenessSliding)) +
labs(x = "Days Since August First 2017", y = "Accute Fatugue ")+
theme_bw()
ggplot(data = massiveTibble) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Team's Percieved Fatigue") +
geom_point(mapping = aes(x=sleepQuality, y=fatigueNorm)) +
labs(x = "Days Since August First 2017", y = "Accute Fatugue ") +
theme_bw()