source("readData.R") library(tidyverse) # file to replace NA values with the median for thet column trainingData <- readRPEData() #duration trainingData$Duration[is.na(trainingData$Duration)] <- median(trainingData$Duration, na.rm=TRUE) print(trainingData$Duration) #RPE trainingData$RPE[is.na(trainingData$RPE)] <- median(trainingData$RPE, na.rm=TRUE) # acute load trainingData$AcuteLoad[is.na(trainingData$AcuteLoad)] <- median(trainingData$AcuteLoad, na.rm=TRUE) # chronic load trainingData$ChronicLoad[is.na(trainingData$ChronicLoad)] <- median(trainingData$ChronicLoad, na.rm=TRUE) # ratio trainingData$AcuteChronicRatio[is.na(trainingData$AcuteChronicRatio)] <- median(trainingData$AcuteChronicRatio, na.rm=TRUE) # objective rating trainingData$ObjectiveRating[is.na(trainingData$ObjectiveRating)] <- median(trainingData$ObjectiveRating, na.rm=TRUE) # focus rating trainingData$FocusRating[is.na(trainingData$FocusRating)] <- median(trainingData$FocusRating, na.rm=TRUE) # session load trainingData$SessionLoad[is.na(trainingData$SessionLoad)] <- median(trainingData$SessionLoad, na.rm=TRUE) # daily load trainingData$DailyLoad[is.na(trainingData$DailyLoad)] <- median(trainingData$DailyLoad, na.rm=TRUE) trainingData$RPE[is.na(trainingData$RPE)] <- median(trainingData$RPE, na.rm=TRUE) write.csv(as.data.frame(trainingData), "cleaned/time_series_rpe_NA_ReplacedWithMedian.csv") head(as.data.frame(trainingData), 100) trainingData