from sklearn import linear_model from sklearn.preprocessing import PolynomialFeatures import numpy as np import pandas as pd from sklearn.metrics import mean_squared_error, r2_score def k_days_into_future_regression(X, y, k, n0): """ linear regression that returns the fitted weights as well as metrics :param X: x timeseries dataframe (very clean, no unamed columns), multidimensional rows :param y: y timeseries dataframe (very clean, no unamed columns), scalar rows :param k: days predicting in advance :param n0: ignoring the first n0 days :return: intercept, slopes, correlation, mean squared error """ col = "TimeSinceAugFirst" inp = [] out = [] for day in y[col][n0 - 1:]: prev = day - k xprev = X[X[col] == prev].drop(columns=[col]).to_numpy() if xprev.shape[0] != 1: continue else: xprev = xprev[0, :] yt = y[y[col] == day].drop(columns=[col]).to_numpy()[0, :] inp.append(xprev) out.append(yt) regr = linear_model.LinearRegression() regr.fit(inp, out) predictions = regr.predict(inp) mse = mean_squared_error(out, predictions)/(len(out) - 2) r2 = r2_score(out, predictions) return regr.intercept_, regr.coef_, r2, mse def standard_lr(x, y): # Standard linear regression formula, gives back params and r2 regr = linear_model.LinearRegression() regr.fit(x, y) predictions = regr.predict(x) mse = mean_squared_error(y, predictions) / (len(y) - 2) r2 = r2_score(y, predictions) return regr.intercept_, regr.coef_, r2, mse def poly_regression(x, y, degree): # Polynomial regression with nth degree, gives back rmse and r2 polynomial_features = PolynomialFeatures(degree=degree) x_poly = polynomial_features.fit_transform(x) model = linear_model.LinearRegression() model.fit(x_poly, y) y_poly_pred = model.predict(x_poly) rmse = np.sqrt(mean_squared_error(y, y_poly_pred)) r2 = r2_score(y, y_poly_pred) return rmse, r2 def main(): file = open("ryan_regressions.txt", 'w') player = pd.read_csv("../data_preparation/cleaned/personal.csv", index_col=0) for name, value in player.iteritems(): if name == "day": continue for j in range(1, 17): ply = player[player['playerID'] == j] x = ply[['fatigueNorm', 'day']] y = ply[name] lr = standard_lr(x, y) poly = poly_regression(x, y, 3) if .9 > lr[2] > .4 or .9 > poly[1] > .4: file.write("Player {} for {}\n".format(j, name)) file.write("{}\n".format(lr)) file.write("{}\n\n".format(poly)) if __name__ == "__main__": main()