source("readData.R") library(tidyverse) RPEData <-readNArpeData() numDays <- max(RPEData$TimeSinceAugFirst) dayList <- 0:numDays workLoad <- c() averageWorkLoad <- c() for(day in dayList) { total <- 0 daylyActivities <- subset(RPEData, TimeSinceAugFirst == day) cat("day: ", day, "\n",sep="") cat("Activity count:", length(daylyActivities$DailyLoad), "\n", sep="") averageWorkLoad <- c(averageWorkLoad, mean(daylyActivities$SessionLoad, na.rm = T)) workLoad <- c(workLoad, sum(daylyActivities$SessionLoad, na.rm = T)) } plot(dayList, averageWorkLoad, main="Average Work Load") plot(dayList, workLoad, main="Daily Total Work Load") slidingAverage <- c() window <- 21 - 1 for(day in window:numDays) { print(length(workLoad[c((day-window):day)])) windowAverage <- mean(workLoad[c((day-window):day)]) slidingAverage <- c(slidingAverage, windowAverage) } plot(window:numDays, slidingAverage, main="Sliding Average") plot(density(slidingAverage), main="Sliding Average Density") plot(density(workLoad), main="Total Work Load Average") dataTibble <- tibble(TimeSinceAugFirst = window:numDays, slidingWorkAverage = slidingAverage) ggplot(data = dataTibble) + theme(plot.title = element_text(hjust = 0.5)) + ggtitle("Team's Total Daily Load Moving Average") + geom_point(mapping = aes(x=TimeSinceAugFirst, y=slidingWorkAverage)) + labs(x = "Days Since August Twenty First 2017", y = "Teams Total Daily Load")+ theme_bw() write.csv(dataTibble, "cleaned/slidingWorkAverage.csv")